162 research outputs found

    High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England

    Get PDF
    This paper uses high-frequency bankside measurements from three catchments selected as part of the UK government-funded Demonstration Test Catchments (DTC) project. We compare the hydrological and hydrochemical patterns during the water year 2011–2012 from the Wylye tributary of the River Avon with mixed land use, the Blackwater tributary of the River Wensum with arable land use and the Newby Beck tributary of the River Eden with grassland land use. The beginning of the hydrological year was unusually dry and all three catchments were in states of drought. A sudden change to a wet summer occurred in April 2012 when a heavy rainfall event affected all three catchments. The year-long time series and the individual storm responses captured by in situ nutrient measurements of nitrate and phosphorus (total phosphorus and total reactive phosphorus) concentrations at each site reveal different pollutant sources and pathways operating in each catchment. Large storm-induced nutrient transfers of nitrogen and or phosphorus to each stream were recorded at all three sites during the late April rainfall event. Hysteresis loops suggested transport-limited delivery of nitrate in the Blackwater and of total phosphorus in the Wylye and Newby Beck, which was thought to be exacerbated by the dry antecedent conditions prior to the storm. The high rate of nutrient transport in each system highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to rivers from diffuse agricultural sources. It also highlights the scale of the challenge in adapting to future extreme weather events under a changing climate

    Probiotici i lekovito bilje u uzgoju šarana (cyprinus carpio l.) u zemljanim bazenima - uticaj na prirast ribe, zdravlje i proizvodne rezultate

    Get PDF
    The aim of the paper is to present the results of feeding carp with traditional grain diet (triticale + wheat) supplemented with probiotics and/or herbs. As probiotics, the EmFarma concentrate, provided by ProBiotics Polska, Poland,was used. This preparation contains consortia of the following microbial bacteria and fungi: Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus plantarum, Lactococcus diacetylactis, Lactococcus lactis, Streptococcus thermophilus, Bacillus subtilis var natto, Saccharomyces cerevisiae and Rhodopseudomonas palustris. The concentrate of probiotic microorganisms was added to the ground corn in an amount of 2 liters of preparation per 1 ton of feed. Prior to adding to the feedstuff, the probiotics were diluted in water. The amount of added water was approximately 10% of feed weight. After mixing probiotics with corn, the feed was left for two hours for swelling. The composition of herbs consisted of powdered Terminalia chebula, Phyllantus emblica, Andrographis paniculata, Tinospora cordifolia and Boerhaavia difusa. The herbal preparation was obtained from the Farmwet company, Poland. The blend of herbs was added in the amount of 3 kg per ton of ground corn feed. The powdered herbs were mixed with grinded corn, moistened with water amounting to approximately 10% of feed dose and left for two hours for swelling. Six feeding groups were examined: - I - natural food only (control group) - II - ground mix of corn - III - ground mix of corn supplemented with probiotics - IV - ground mix of corn supplemented with herbs - V - ground mix of corn supplemented with probiotics and herb - VI - pelleted feed Aller Aqua (referential group) Experimental diets were used for feeding carp fingerlings (C1), two-year restocking material (C2) and consumable carps (C3). Stocking densities of carp, were as follows: - for C1– 20000 ind./ha - for C2– 5000 ind./ha - for C3–1500 ind./ha The following parameters were measured and analyzed: - final body mass (g/ind.) - yield (kg/ha) - survival rate (S) - FCR (kg) - Fulton’s coefficient (F) - number of parasites (Trichodina–Trich., Chilodonella–Chil., Epistylis–Epist., Costia,) - level of lisozyme (mg/l) - level of gamma globulins (g/l)Cilj ovog rada je da prikaže rezultate ishrane šarana tradicionalnom smešom žitarica (tritikale + pšenica) sa dodatkom probiotika i/ili lekovitog bilja. Kao probiotik korišćen je koncentrat EmFarma, koji je obezbedio "ProBiotics Polska" iz Poljske. Ova smesa sadrži skup sledećih mikroorganizama, bakterija i gljivica: Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus plantarum, Lactococcus diacetylactis, Lactococcus lactis, Streptococcus thermophilus, Bacillus subtilis var natto, Saccharomyces cerevisiae and Rhodopseudomonas palustris. Koncentrat probiotskih mikroorganizama dodat je u mleveni kukuruz u količini od 2 litra preparata na 1 tonu hraniva. Pre dodavanja hranivima probiotski preparat je razređen u vodi. Količina dodate vode bila je oko 10% od težine hrane. Posle mešanja probiotika sa kukuruzom, hranivo je ostavljeno dva sata da nabubri. Lekovito bilje sastojalo se od praha Terminalia chebula, Phyllantus emblica, Andrographis paniculata, Tinospora cordifolia i Boerhaavia difusa. Biljni preparat dobijen je od kompanije Farmwet iz Poljske. Mešavina bilja dodata je u količini od 3 kg na tonu kukuruzne prekrupe. Bilje u prahu pomešano je sa prekrupom, zatim navlaženo vodom u količini od oko 10% od doze hrane i ostavljeno dva sata da nabubri. Ispitivanje je vršeno na šest hranidbenih grupa: - I - samo prirodna hrana (kontrolna grupa) - II - smeša sa kukuruznom prekrupom - III - smeša sa kukuruznom prekrupom obogaćena probioticima - IV - smeša sa kukuruznom prekrupom obogaćena lekovitim biljem - V - smeša sa kukuruznom prekrupom obogaćena probioticima i lekovitim biljem - VI - peletirana hrana Aller Aqua (referentna grupa) Eksperimentalne smeše korišćene su za ishranu šaranske mlađi (C1), dvogodišnjaka za dalji uzgoj (C2) i konzumnih šarana (C3). Gustine nasada šarana bile su sledeće: - za C1– 20000 jedinki/ha - za C2– 5000 jedinki/ha - za C3–1500 jedinki/ha Sledeći parametri su mereni i analizirani: - završna telesna masa (g/jedinka) - prinos (kg/ha) - stopa preživljavanja (S) - stopa konverzije hrane, FCR (kg) - Fultonov koeficijent (F) - broj parazita (Trichodina–Trich., Chilodonella–Chil., Epistylis–Epist., Costia,) - nivo lizozima (mg/l) - nivo gama globulina (g/l

    Signs of immunosenescence correlate with poor outcome of mRNA COVID-19 vaccination in older adults

    Get PDF
    Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is effective in preventing COVID-19 hospitalization and fatal outcome. However, several studies indicated that there is reduced vaccine effectiveness among older individuals, which is correlated with their general health status1,2. How and to what extent age-related immunological defects are responsible for the suboptimal vaccine responses observed in older individuals receiving SARS-CoV-2 messenger RNA vaccine, is unclear and not fully investigated1,3–5. In this observational study, we investigated adaptive immune responses in adults of various ages (22–99 years old) receiving 2 doses of the BNT162b2 mRNA vaccine. Vaccine-induced Spike-specific antibody, and T and memory B cell responses decreased with increasing age. These responses positively correlated with the percentages of peripheral naïve CD4+ and CD8+ T cells and negatively with CD8+ T cells expressing signs of immunosenescence. Older adults displayed a preferred T cell response to the S2 region of the Spike protein, which is relatively conserved and a target for cross-reactive T cells induced by human ‘common cold’ coronaviruses. Memory T cell responses to influenza virus were not affected by age-related changes, nor the SARS-CoV-2-specific response induced by infection. Collectively, we identified signs of immunosenescence correlating with the outcome of vaccination against a new viral antigen to which older adults are immunologically naïve. This knowledge is important for the management of COVID-19 infections in older adults

    High-resolution monitoring of catchment nutrient response to the end of the 2011-2012 drought in England, captured by the demonstration test catchments.

    Get PDF
    The Demonstration Test Catchments (DTC) project is a UK Government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test the efficacy of mitigation measures on working farms in small tributary sub-catchments equipped with continuous water quality monitoring stations. The Hampshire Avon in the south is a mixed livestock and arable farming catchment, the River Wensum in the east is a lowland catchment with predominantly arable farming and land use in the River Eden catchment in the north-west is predominantly livestock farming. One of the many strengths of the DTC as a national research platform is that it provides the ability to investigate catchment hydrology and biogeochemical response across different landscapes and geoclimatic characteristics, with a range of differing flow behaviours, geochemistries and nutrient chemistries. Although numerous authors present studies of individual catchment responses to storms, no studies exist of multiple catchment responses to the same rainfall event captured with in situ high-resolution nutrient monitoring at a national scale. This paper brings together findings from all three DTC research groups to compare the response of the catchments to a major storm event in April 2012. This was one of the first weather fronts to track across the country following a prolonged drought period affecting much of the UK through 2011–2012, marking an unusual meteorological transition when a rapid shift from drought to flood risk occurred. The effects of the weather front on discharge and water chemistry parameters, including nitrogen species (NO3-N and NH4-N) and phosphorus fractions (total P (TP) and total reactive P (TRP)), measured at a half-hourly time step are examined. When considered in the context of one hydrological year, flow and concentration duration curves reveal that the weather fronts resulted in extreme flow, nitrate and TP concentrations in all three catchments but with distinct differences in both hydrographs and chemographs. Hysteresis loops constructed from high resolution data are used to highlight an array of potential pollutant sources and delivery pathways. In the Hampshire Avon DTC, transport was dominated by sub-surface processes, where phosphorus, largely in the soluble form, was found to be transport-limited. In the Wensum DTC, transport was largely dominated by rapid sub-surface movement due to the presence of under-drainage, which mobilised large quantities of nitrate during the storm. In the Eden DTC, transport was found to be initially dominated by surface runoff, which switched to subsurface delivery on the falling limb of the hydrograph, with the surface delivery transporting large amounts of particulate phosphorus to the river, with a transport-limited response. The lack of exhaustion of nutrient delivery in response to such extreme flow generation indicates the size of the nutrient pools stored in these catchments, and highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to UK river systems from diffuse agricultural sources

    Engineering improved ethylene production: Leveraging systems Biology and adaptive laboratory evolution

    Get PDF
    Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including E. coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate limiting steps in biological ethylene production. We employed a combination of genome scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to the EFE enzyme (WT vs mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments

    Crop rotational diversity can mitigate climate-induced grain yield losses

    Get PDF
    Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.</p

    A Unique Role for the Host ESCRT Proteins in Replication of Tomato bushy stunt virus

    Get PDF
    Plus-stranded RNA viruses replicate in infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of seven ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. In this paper, we show that the expression of dominant negative Vps23p, Vps24p, Snf7p, and Vps4p ESCRT factors inhibited virus replication in the plant host, suggesting that tombusviruses co-opt selected ESCRT proteins for the assembly of the viral replicase complex. We also show that TBSV p33 replication protein interacts with Vps23p ESCRT-I and Bro1p accessory ESCRT factors. The interaction with p33 leads to the recruitment of Vps23p to the peroxisomes, the sites of TBSV replication. The viral replicase showed reduced activity and the minus-stranded viral RNA in the replicase became more accessible to ribonuclease when derived from vps23Δ or vps24Δ yeast, suggesting that the protection of the viral RNA is compromised within the replicase complex assembled in the absence of ESCRT proteins. The recruitment of ESCRT proteins is needed for the precise assembly of the replicase complex, which might help the virus evade recognition by the host defense surveillance system and/or prevent viral RNA destruction by the gene silencing machinery

    The TPR Domain in the Host Cyp40-like Cyclophilin Binds to the Viral Replication Protein and Inhibits the Assembly of the Tombusviral Replicase

    Get PDF
    Replication of plus-stranded RNA viruses is greatly affected by numerous host-coded proteins acting either as susceptibility or resistance factors. Previous genome-wide screens and global proteomics approaches with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of cyclophilins, which are a large family of host prolyl isomerases, in TBSV replication. In this paper, we identified those members of the large cyclophilin family that interacted with the viral replication proteins and inhibited TBSV replication. Further characterization of the most effective cyclophilin, the Cyp40-like Cpr7p, revealed that it strongly inhibits many steps during TBSV replication in a cell-free replication assay. These steps include viral RNA recruitment inhibited via binding of Cpr7p to the RNA-binding region of the viral replication protein; the assembly of the viral replicase complex and viral RNA synthesis. Since the TPR (tetratricopeptide repeats) domain, but not the catalytic domain of Cpr7p is needed for the inhibitory effect on TBSV replication, it seems that the chaperone activity of Cpr7p provides the negative regulatory function. We also show that three Cyp40-like proteins from plants can inhibit TBSV replication in vitro and Cpr7p is also effective against Nodamura virus, an insect pathogen. Overall, the current work revealed a role for Cyp40-like proteins and their TPR domains as regulators of RNA virus replication
    corecore