25 research outputs found
Structural, optical and electronic properties of homoepitaxial GaN nanowalls grown on GaN template by laser molecular beam epitaxy
We have grown homoepitaxial GaN nanowall networks on GaN template using an ultra-high vacuum laser assisted molecular beam epitaxy system by ablating solid GaN target under a constant r.f. nitrogen plasma ambient. The effect of laser repetition rate in the range of 10 to 30 Hz on the structural properties of the GaN nanostructures has been studied using high resolution X-ray diffraction, field emission scanning electron microscopy and Raman spectroscopy. The variation of the laser repetition rate affected the tip width and pore size of the nanowall networks. The z-profile Raman spectroscopy measurements revealed the GaN nanowall network retained the same strain present in the GaN template. The optical properties of these GaN nanowall networks have been studied using photoluminescence and ultrafast spectroscopy and an enhancement of optical band gap has been observed for the nanowalls having a tip width of 10-15 nm due to the quantum carrier confinement effect at the wall edges. The electronic structure of the GaN nanowall networks has been studied using X-ray photoemission spectroscopy and it has been compared to the GaN template. The calculated Ga/N ratio is largest (similar to 2) for the GaN nanowall network grown at 30 Hz. Surface band bending decreases for the nanowall network with the lowest tip width. The homoepitaxial growth of porous GaN nanowall networks holds promise for the design of nitride based sensor devices
Metamaterial-Enhanced Nonlinear Terahertz Spectroscopy
We demonstrate large nonlinear terahertz responses in the gaps of metamaterial split ring resonators in several materials and use nonlinear THz transmission and THz-pump/THz-probe spectroscopy to study the nonlinear responses and dynamics. We use the field enhancement in the SRR gaps to initiate high-field phenomena at lower incident fields. In vanadium dioxide, we drive the insulator-to-metal phase transition with high-field THz radiation. The film conductivity increases by over two orders of magnitude and the phase transition occurs on a several picosecond timescale. In gallium arsenide, we observe high-field transport phenomena, including mobility saturation and impact ionization. The carrier density increases by up to ten orders of magnitude at high fields. At the highest fields, we demonstrate THz-induced damage in both vanadium dioxide and gallium arsenide.United States. Dept. of Energy (DOE-BES, grant DE-FG02- 09ER46643)United States. Office of Naval Research (ONR Grant No. N00014-09-1-1103
Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation
Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.ope
Ultrafast pump-probe spectroscopy studies of CeO2 thin film deposited on Ni-W substrate by RF magnetron sputtering
This study presents the first investigation of rapid dynamical processes that occur in pure CeO2 thin film, using ultra fast pump-probe spectroscopy at room temperature. For this purpose we have used a single (200) oriented CeO2 film deposited on biaxially textured Ni-W substrate by RF magnetron sputtering technique. The ultrafast transient spectra show initial sharp rise transition followed by an exponential photon decay. This rise time is about 10 ps irrespective of the probe wavelengths range 500-800 nm. The initial decay constant (tau) at 500 nm probe wavelength is found to be 171 ps, while at 800 nm probe wavelength it is 107.5 ps. The ultrafast absorption spectra show two absorption peaks at 745 and 800 nm, and are attributed to the electronic transitions from F-2(7/2)-F-2(5/2) and S-1(0)-F-1(3) respectively. The relatively high intensity absorption peak at 745 nm indicates dominant f-f electronic transition. Further, the absorption peak at 745 nm splits into two distinct peaks with respect to delay time, and is attributed to the charge transfer in between Ce4+ and Ce3+ ions. These results indicate that CeO2 itself is a potential candidate and can be used for optical applications
Investigation of dynamic optical behavior of CeO2 thin film using terahertz spectroscopy
Dynamic optical behavior of CeO2 thin film has been investigated using Terahertz spectroscopy at room temperature by exciting with different amplitude pulses. The CeO2 thin films have been deposited on Si (100) substrate by RF magnetron sputtering technique. It has been observed that the optical density increases at 0.75 THz on the incident of pulse >= 100 kV/cm indicating that it is possible to induce extremely large amplitude motions in the harmonic potential of the material by direct excitation of CeO2 vibrations with intense THz pulse. This study further shows that it is possible to control the large amplitude motions in the materials using different high power THz pulses, and in turn can control the optical properties, establishing the nonlinear spectroscopy technique for such studies