17 research outputs found

    Red blood cell transfusion in septic shock - clinical characteristics and outcome of unselected patients in a prospective, multicentre cohort

    Get PDF
    BACKGROUND: Treating anaemia with red blood cell (RBC) transfusion is frequent, but controversial, in patients with septic shock. Therefore we assessed characteristics and outcome associated with RBC transfusion in this group of high risk patients. METHODS: We did a prospective cohort study at 7 general intensive care units (ICUs) including all adult patients with septic shock in a 5-month period. RESULTS: Ninety-five of the 213 included patients (45%) received median 3 (interquartile range 2–5) RBC units during shock. The median pre-transfusion haemoglobin level was 8.1 (7.4–8.9) g/dl and independent of shock day and bleeding. Patients with cardiovascular disease were transfused at higher haemoglobin levels. Transfused patients had higher Simplified Acute Physiology Score (SAPS) II (56 (45-69) vs. 48 (37-61), p = 0.0005), more bleeding episodes, lower haemoglobin levels days 1 to 5, higher Sepsis-related Organ Failure Assessment (SOFA) scores (days 1 and 5), more days in shock (5 (3-10) vs. 2 (2-4), p = 0.0001), more days in ICU (10 (4-19) vs. 4 (2-8), p = 0.0001) and higher 90-day mortality (66 vs. 43%, p = 0.001). The latter association was lost after adjustment for admission category and SAPS II and SOFA-score on day 1. CONCLUSIONS: The decision to transfuse patients with septic shock was likely affected by disease severity and bleeding, but haemoglobin level was the only measure that consistently differed between transfused and non-transfused patients

    Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis.

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Hydroxyethyl starch (HES) [corrected] is widely used for fluid resuscitation in intensive care units (ICUs), but its safety and efficacy have not been established in patients with severe sepsis. In this multicenter, parallel-group, blinded trial, we randomly assigned patients with severe sepsis to fluid resuscitation in the ICU with either 6% HES 130/0.42 (Tetraspan) or Ringer's acetate at a dose of up to 33 ml per kilogram of ideal body weight per day. The primary outcome measure was either death or end-stage kidney failure (dependence on dialysis) at 90 days after randomization. Of the 804 patients who underwent randomization, 798 were included in the modified intention-to-treat population. The two intervention groups had similar baseline characteristics. At 90 days after randomization, 201 of 398 patients (51%) assigned to HES 130/0.42 had died, as compared with 172 of 400 patients (43%) assigned to Ringer's acetate (relative risk, 1.17; 95% confidence interval [CI], 1.01 to 1.36; P=0.03); 1 patient in each group had end-stage kidney failure. In the 90-day period, 87 patients (22%) assigned to HES 130/0.42 were treated with renal-replacement therapy versus 65 patients (16%) assigned to Ringer's acetate (relative risk, 1.35; 95% CI, 1.01 to 1.80; P=0.04), and 38 patients (10%) and 25 patients (6%), respectively, had severe bleeding (relative risk, 1.52; 95% CI, 0.94 to 2.48; P=0.09). The results were supported by multivariate analyses, with adjustment for known risk factors for death or acute kidney injury at baseline. Patients with severe sepsis assigned to fluid resuscitation with HES 130/0.42 had an increased risk of death at day 90 and were more likely to require renal-replacement therapy, as compared with those receiving Ringer's acetate. (Funded by the Danish Research Council and others; 6S ClinicalTrials.gov number, NCT00962156.)Danish Research Council 271-08-0691 09-066938 Rigshospitalet Research Council Scandinavian Society of Anesthesiology and Intensive Care Medicine ACTA Foundation Fresenius Kab

    The Procalcitonin And Survival Study (PASS) – A Randomised multi-center investigator-initiated trial to investigate whether daily measurements biomarker <it>Procalcitonin </it>and pro-active diagnostic and therapeutic responses to abnormal Procalcitonin levels, can improve survival in intensive care unit patients. Calculated sample size (target population): 1000 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sepsis and complications to sepsis are major causes of mortality in critically ill patients. Rapid treatment of sepsis is of crucial importance for survival of patients. The infectious status of the critically ill patient is often difficult to assess because symptoms cannot be expressed and signs may present atypically. The established biological markers of inflammation (leucocytes, C-reactive protein) may often be influenced by other parameters than infection, and may be unacceptably slowly released after progression of an infection. At the same time, lack of a relevant antimicrobial therapy in an early course of infection may be fatal for the patient. Specific and rapid markers of bacterial infection have been sought for use in these patients.</p> <p>Methods</p> <p>Multi-centre randomized controlled interventional trial. Powered for superiority and non-inferiority on all measured end points. Complies with, "Good Clinical Practice" (ICH-GCP Guideline (CPMP/ICH/135/95, Directive 2001/20/EC)). Inclusion: 1) Age ≥ 18 years of age, 2) Admitted to the participating intensive care units, 3) Signed written informed consent.</p> <p>Exclusion: 1) Known hyper-bilirubinaemia. or hypertriglyceridaemia, 2) Likely that safety is compromised by blood sampling, 3) Pregnant or breast feeding.</p> <p>Computerized Randomisation: Two arms (1:1), n = 500 per arm: Arm 1: standard of care. Arm 2: standard of care and Procalcitonin guided diagnostics and treatment of infection.</p> <p>Primary Trial Objective: To address whether daily Procalcitonin measurements and immediate diagnostic and therapeutic response on day-to-day changes in procalcitonin can reduce the mortality of critically ill patients.</p> <p>Discussion</p> <p>For the first time ever, a mortality-endpoint, large scale randomized controlled trial with a biomarker-guided strategy compared to the best standard of care, is conducted in an Intensive care setting. Results will, with a high statistical power answer the question: Can the survival of critically ill patients be improved by actively using biomarker procalcitonin in the treatment of infections? 700 critically ill patients are currently included of 1000 planned (June 2008). Two interim analyses have been passed without any safety or futility issues, and the third interim analysis is soon to take place. Trial registration number at clinicaltrials.gov: Id. nr.: NCT00271752).</p
    corecore