24 research outputs found

    Multiscale Modeling of Complex Dynamic Problems: An Overview and Recent Developments

    Get PDF
    Multiscale modeling aims to solve problems at the engineering (macro) scale while considering the complexity of the microstructure with minimum cost. Generally, two scales are considered in multiscale modeling: small scale, which is designed to capture the mechanical phenomena at the atomistic, molecular or molecular cluster level, and large scale which is connected to continuous description. For each scale, well-established numerical methods have been developed over the years to handle the relevant phenomena. As a first part of this paper, the most popular numerical methods, used at different scales, as well as the coupling approaches between them are classified, according to their features and applications, so that the place of those used in multiscale modeling can be distinguished. Subsequently, the class of concurrent discrete–continuum coupling approaches, which is well adapted for dynamic studies of complex multiscale problems, is reviewed. Several techniques used in this class are also detailed. Among them, the bridging domain (BD) technique is used to develop a discrete–continuum coupling approach, adapted for dynamic simulations, between the Discrete Element Method and the Constrained Natural Element Method (CNEM). This approach is applied to study the BD coupling parameters in dynamics. Several results giving more light on the setting of these parameters in practice are obtained

    Antibacterial and in vivo reactivity of bioactive glass and poly(vinyl alcohol) composites prepared by melting and sol-gel techniques

    Full text link
    International audienceBioactive glass particle is used in the repair of bone defects. This material undergoes a series of surface in vivo reactions, which leads to osteointegration. We evaluated the effect of the bioactive glass synthesis, sol-gel (BG(S)) versus melting (BG(M)), associated with polyvinyl-alcohol (PVA) on in vivo bioactivity with biochemical parameters, liver-kidney histological structure and antibacterial in vitro activity. These composites were testified in many bacteria and implanted in ovariectomized rat. The serum and organs (liver and kidney) of all groups, control and treated rats, were collected to investigate the side effects of our composites, BG(S)-PVA and BG(M)-PVA, in comparison with control and ovariectomized rats. Also, the implants, before and after implantation, were prepared for analysis using physicochemical techniques such as Fourier transform infrared spectroscopy and X-ray diffraction. Our results have shown the stability of natremia, kaliemia, calcemia and phosphoremia. The histological structures of liver and kidney in implanted rats are intact compared to control and ovariectomized rats. BG(S)-PVA is characterized by a higher antibacterial effect on negative and positive gram bacteria than BG(M)-PVA. The physicochemical results have confirmed a progressive degradation of BG(S)-PVA and BG(M)-PVA, while replacing the implant by an apatite layer. But this bioactivity of BG(S)-PVA is faster than BG(M)-PVA. We can therefore confirm, on the one hand, the biocompatibility of our two implants and, on the other hand, the beneficial effect of sol-gel synthesis technique versus melting, both on the antibacterial effect and on the rapid formation of layer hydroxyapatite, and consequently on osteogenesi
    corecore