253 research outputs found
Modeling transcription factor binding events to DNA using a random walker/jumper representation on a 1D/2D lattice with different affinity sites
Surviving in a diverse environment requires corresponding organism responses.
At the cellular level, such adjustment relies on the transcription factors
(TFs) which must rapidly find their target sequences amidst a vast amount of
non-relevant sequences on DNA molecules. Whether these transcription factors
locate their target sites through a 1D or 3D pathway is still a matter of
speculation. It has been suggested that the optimum search time is when the
protein equally shares its search time between 1D and 3D diffusions. In this
paper, we study the above problem using a Monte Carlo simulation by considering
a very simple physical model. A 1D strip, representing a DNA, with a number of
low affinity sites, corresponding to non-target sites, and high affinity sites,
corresponding to target sites, is considered and later extended to a 2D strip.
We study the 1D and 3D exploration pathways, and combinations of the two modes
by considering three different types of molecules: a walker that randomly walks
along the strip with no dissociation; a jumper that represents dissociation and
then re-association of a TF with the strip at later time at a distant site; and
a hopper that is similar to the jumper but it dissociates and then
re-associates at a faster rate than the jumper. We analyze the final
probability distribution of molecules for each case and find that TFs can
locate their targets fast enough even if they spend 15% of their search time
diffusing freely in the solution. This indeed agrees with recent experimental
results obtained by Elf et al. 2007 and is in contrast with theoretical
expectation.Comment: 24 pages, 9 figure
The Transcriptional Regulator CBP Has Defined Spatial Associations within Interphase Nuclei
It is becoming increasingly clear that nuclear macromolecules and macromolecular complexes are compartmentalized through binding interactions into an apparent three-dimensionally ordered structure. This ordering, however, does not appear to be deterministic to the extent that chromatin and nonchromatin structures maintain a strict 3-D arrangement. Rather, spatial ordering within the cell nucleus appears to conform to stochastic rather than deterministic spatial relationships. The stochastic nature of organization becomes particularly problematic when any attempt is made to describe the spatial relationship between proteins involved in the regulation of the genome. The CREB–binding protein (CBP) is one such transcriptional regulator that, when visualised by confocal microscopy, reveals a highly punctate staining pattern comprising several hundred individual foci distributed within the nuclear volume. Markers for euchromatic sequences have similar patterns. Surprisingly, in most cases, the predicted one-to-one relationship between transcription factor and chromatin sequence is not observed. Consequently, to understand whether spatial relationships that are not coincident are nonrandom and potentially biologically important, it is necessary to develop statistical approaches. In this study, we report on the development of such an approach and apply it to understanding the role of CBP in mediating chromatin modification and transcriptional regulation. We have used nearest-neighbor distance measurements and probability analyses to study the spatial relationship between CBP and other nuclear subcompartments enriched in transcription factors, chromatin, and splicing factors. Our results demonstrate that CBP has an order of spatial association with other nuclear subcompartments. We observe closer associations between CBP and RNA polymerase II–enriched foci and SC35 speckles than nascent RNA or specific acetylated histones. Furthermore, we find that CBP has a significantly higher probability of being close to its known in vivo substrate histone H4 lysine 5 compared with the closely related H4 lysine 12. This study demonstrates that complex relationships not described by colocalization exist in the interphase nucleus and can be characterized and quantified. The subnuclear distribution of CBP is difficult to reconcile with a model where chromatin organization is the sole determinant of the nuclear organization of proteins that regulate transcription but is consistent with a close link between spatial associations and nuclear functions
Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease)
The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80–85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery
Phenotypic variation of erythrocyte linker histone H1.c in a pheasant (Phasianus colchicus L.) population
Our goal was to characterize a phenotypic variation of the pheasant erythrocyte linker histone subtype H1.c. By using two-dimensional polyacrylamide gel electrophoresis three histone H1.c phenotypes were identified. The differently migrating allelic variants H1.c1 and H1.c2 formed either two homozygous phenotypes, c1 and c2, or a single heterozygous phenotype, c1c2. In the pheasant population screened, birds with phenotype c2 were the most common (frequency 0.761) while individuals with phenotype c1 were rare (frequency 0.043)
The Roles of Cyclin A2, B1, and B2 in Early and Late Mitotic Events
This paper presents evidence that chromatin condensation, like nuclear envelope breakdown, is brought about through the combined effects of cyclins A2 and B1, and that cyclins B1 and B2 are largely responsible for maintenance of a spindle assembly checkpoint arrest
Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies
Antibodies specific for histone post-translational modifications (PTMs) have been central to our understanding of chromatin biology. Here, we describe an unexpected and novel property of histone H4 site-specific acetyl antibodies in that they prefer poly-acetylated histone substrates. By all current criteria, these antibodies have passed specificity standards. However, we find these site-specific histone antibodies preferentially recognize chromatin signatures containing two or more adjacent acetylated lysines. Significantly, we find that the poly-acetylated epitopes these antibodies prefer are evolutionarily conserved and are present at levels that compete for these antibodies over the intended individual acetylation sites. This alarming property of acetyl-specific antibodies has far-reaching implications for data interpretation and may present a challenge for the future study of acetylated histone and non-histone proteins
Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma
<p>Abstract</p> <p>Background</p> <p>Tumor cell proliferation is a predictor of survival in cutaneous melanoma. The aim of the present study was to evaluate the prognostic impact of mitotic count, Ki-67 expression and novel proliferation markers phosphohistone H3 (PHH3), minichromosome maintenance protein 4 (MCM4) and mitosin, and to compare the results with histopathological variables.</p> <p>Methods</p> <p>202 consecutive cases of nodular cutaneous melanoma were initially included. Mitotic count (mitosis per mm<sup>2</sup>) was assessed on H&E sections, and Ki-67 expression was estimated by immunohistochemistry on standard sections. PHH3, MCM4 and mitosin were examined by staining of tissue microarrays (TMA) sections.</p> <p>Results</p> <p>Increased mitotic count and elevated Ki-67 expression were strongly associated with increased tumor thickness, presence of ulceration and tumor necrosis. Furthermore, high mitotic count and elevated Ki-67 expression were also associated with Clark's level of invasion and presence of vascular invasion. High expression of PHH3 and MCM4 was correlated with high mitotic count, elevated Ki-67 expression and tumor ulceration, and increased PHH3 frequencies were associated with tumor thickness and presence of tumor necrosis. Univariate analyses showed a worse outcome in cases with elevated Ki-67 expression and high mitotic count, whereas PHH3, MCM4 and mitosin were not significant. Tumor cell proliferation by Ki-67 had significant prognostic impact by multivariate analysis.</p> <p>Conclusions</p> <p>Ki-67 was a stronger and more robust prognostic indicator than mitotic count in this series of nodular melanoma. PHH3, MCM4 and mitosin did not predict patient survival.</p
- …