2,315,815 research outputs found

    Residual Action of Slow Release Systemic Insecticides on \u3ci\u3eRhopalosiphum Padi\u3c/i\u3e (Homoptera: Aphididae) on Wheat

    Get PDF
    Slow release formulations of acephate and carbofuran encapsulated in pearl corn­ starch or corn flour granules were applied to the soil at seeding time of potted \u27Caldwell\u27 wheat in the laboratory. Dosages of these insecticides were adjusted to a standard of IO kg/ha of a 10 10 granular formulation of carbofuran. The residual action of these insecticide treatments against Rhopalosiphum padi were compared with those obtained with that of carbofuran 150 at corresponding dosages and foliar sprays of solutions of acephate (25 10 EC) at 0.2 10 and carbofuran (4F) at 1.25 10, applied 12 d after seedling emergence. The residual action of carbofuran 150, which controlled R. padi since seedling emergence, lasted 28.5 d. The slow release granular formulations of carbofuran began to provide control (\u3e 50 10 aphid mortality) on days 13.3 and 17.9 after seeding. They controlled the insect until days 31.6 and 35.5 after seeding. The two corresponding granular formulations of acephate began to provide control on days 15.0 and 17.0 after seeding and con­ trolled the aphids until days 31.5 and 32.8 after seeding. The foliar sprays of acephate and carbofuran provided control for 18.3 and 36.2 d from application, respectively. The slow release granular formulations provided control of R. padi, an important vector of barley yellow dwarf virus, during early. stages of wheat development

    Symmetry Scheme for Amino Acid Codons

    Full text link
    Group theoretical concepts are invoked in a specific model to explain how only twenty amino acids occur in nature out of a possible sixty four. The methods we use enable us to justify the occurrence of the recently discovered twenty first amino acid selenocysteine, and also enables us to predict the possible existence of two more, as yet undiscovered amino acids.Comment: 18 pages which include 4 figures & 3 table

    Component sizes in networks with arbitrary degree distributions

    Full text link
    We give an exact solution for the complete distribution of component sizes in random networks with arbitrary degree distributions. The solution tells us the probability that a randomly chosen node belongs to a component of size s, for any s. We apply our results to networks with the three most commonly studied degree distributions -- Poisson, exponential, and power-law -- as well as to the calculation of cluster sizes for bond percolation on networks, which correspond to the sizes of outbreaks of SIR epidemic processes on the same networks. For the particular case of the power-law degree distribution, we show that the component size distribution itself follows a power law everywhere below the phase transition at which a giant component forms, but takes an exponential form when a giant component is present.Comment: 5 pages, 1 figur

    An 80 pc Long Massive Molecular Filament in the Galactic Mid-Plane

    Full text link
    The ubiquity of filaments in star forming regions on a range of scales is clear, yet their role in the star formation process remains in question. We suggest that there are distinct classes of filaments which are responsible for their observed diversity in star-forming regions. An example of a massive molecular filament in the Galactic mid-plane formed at the intersection of UV-driven bubbles which displays a coherent velocity structure (< 4 km/s) over 80 pc is presented. We classify such sources as Massive Molecular Filaments (MMFs; M > 10^4 Msun, length > 10 pc, velocity gradient < 5 km/s) and suggest that MMFs are just one of the many different classes of filaments discussed in the literature today. Many MMFs are aligned with the Galactic Plane and may be akin to the dark dust lanes seen in Grand Design Spirals.Comment: To appear in proceedings of the 'Labyrinth of Star Formation' meeting (18-22 June 2012, Chania, Greece), published by Springe

    Model bicategories and their homotopy bicategories

    Full text link
    We give the definitions of model bicategory and ww-homotopy, which are natural generalizations of the notions of model category and homotopy to the context of bicategories. For any model bicategory C\mathcal{C}, denote by Cfc\mathcal{C}_{fc} the full sub-bicategory of the fibrant-cofibrant objects. We prove that the 2-dimensional localization of C\mathcal{C} at the weak equivalences can be computed as a bicategory \mathcal{H}\mbox{o}(\mathcal{C}) whose objects and arrows are those of Cfc\mathcal{C}_{fc} and whose 2-cells are classes of ww-homotopies up to an equivalence relation. The pseudofunctor \mathcal{C} \stackrel{r}{\longrightarrow} \mathcal{H}\mbox{o}(\mathcal{C}) which yields the localization is constructed by using a notion of fibrant-cofibrant replacement in this context. When considered for a model category, the results in this article give in particular a bicategory whose reflection into categories is the usual homotopy category constructed by Quillen.Comment: 37 pages, many elevator calculus diagrams. This is a "preliminary version

    Analytical Model for the Impulse of Single-Cycle Pulse Detonation Tube

    Get PDF
    An analytical model for the impulse of a single-cycle pulse detonation tube has been developed and validated against experimental data. The model is based on the pressure history at the thrust surface of the detonation tube. The pressure history is modeled by a constant pressure portion, followed by a decay due to gas expansion out of the tube. The duration and amplitude of the constant pressure portion is determined by analyzing the gasdynamics of the self-similar flow behind a steadily moving detonation wave within the tube. The gas expansion process is modeled using dimensional analysis and empirical observations. The model predictions are validated against direct experimental measurements in terms of impulse per unit volume, specific impulse, and thrust. Comparisons are given with estimates of the specific impulse based on numerical simulations. Impulse per unit volume and specific impulse calculations are carried out for a wide range of fuel–oxygen–nitrogen mixtures (including aviation fuels) of varying initial pressure, equivalence ratio, and nitrogen dilution. The effect of the initial temperature is also investigated. The trends observed are explained using a simple scaling analysis showing the dependency of the impulse on initial conditions and energy release in the mixture
    • …
    corecore