1,442 research outputs found

    A direct numerical simulation method for complex modulus of particle dispersions

    Full text link
    We report an extension of the smoothed profile method (SPM)[Y. Nakayama, K. Kim, and R. Yamamoto, Eur. Phys. J. E {\bf 26}, 361(2008)], a direct numerical simulation method for calculating the complex modulus of the dispersion of particles, in which we introduce a temporally oscillatory external force into the system. The validity of the method was examined by evaluating the storage G(ω)G'(\omega) and loss G"(ω)G"(\omega) moduli of a system composed of identical spherical particles dispersed in an incompressible Newtonian host fluid at volume fractions of Φ=0\Phi=0, 0.41, and 0.51. The moduli were evaluated at several frequencies of shear flow; the shear flow used here has a zigzag profile, as is consistent with the usual periodic boundary conditions

    Researches is health of Pirarucu, Arapaima gigas: partnership between EMBRAPA-SEBRAE.

    Get PDF
    Aiming to deepen the scientific knowledge on health aspects of pirarucu, and attempting to improve the fingerlings survival rates a partnership was signed between SEBRAE and EMBRAPA, in collaboration with the UFT

    Lattice Model of Sweeping Interface for Drying Process in Water-Granule Mixture

    Get PDF
    Based on the invasion percolation model, a lattice model for the sweeping interface dynamics is constructed to describe the pattern forming process by a sweeping interface upon drying the water-granule mixture. The model is shown to produce labyrinthine patterns similar to those found in the experiment[Yamazaki and Mizuguchi, J. Phys. Soc. Jpn. \textbf{69} (2000) 2387]. Upon changing the initial granular density, resulting patterns undergo the percolation transition, but estimated critical exponents are different from those of the conventional percolation. Loopless structure of clusters in the patterns produced by the sweeping dynamics seems to influence the nature of the transition.Comment: 6 pages, 7 figure
    corecore