939 research outputs found

    Women in engineering: statistical analysis of ACT data and proposed procedure to reverse trend

    Get PDF
    Journal ArticleWomen have historically been underrepresented both in college majors and professional careers in STEM fields. This disparity can be observed in many countries, though it is most evident in the US. In this paper we analyze historical ACT data over a 30-year span and correlate gender differences with ACT scores and expressed interest in STEM (Science, Technology, Engineering, and Math) related college majors. SPSS software was used to analyze the data and examine the historical trends of students' expressed interest in STEM related majors. Results show that there is a significant discrepancy between the number of men and women students who expressed interest in engineering majors. The data also show that social influences such as the emergence of computer fields including computer gaming and the dot.com era have profound influence in students' interest in STEM fields. To help develop specific strategies for timely remediation and help specific strategies for timely remediation and help reverse this trend students were grouped into three categories -- well prepared (ACT ? 28), under prepared (27 ? ACT ? 19), and unprepared (ACT < 19). Of the total number of students who expressed interest in engineering majors there are many who appear either completely unprepared or relatively under prepared for the demands of these fields. Results from this analysis demonstrate the importance of earlier interventions to encourage students who still have enough time to prepare for opportunities that interest them. It is also probable that students are making college major choices based on little or no data, and may, therefore, be at retention risk if they are admitted into an engineering program. This paper also highlights ongoing efforts to share data and work with high school counselors in an effort to help students identify more realistic career options or to timely target students for effective math remediation and help encourage increased participation in STEM majors and careers. Based on the data found in these analyses, we will next be surveying high school career guidance counselors. This survey will help gain insight into the high school counselors' understanding and potential biases regarding engineering and engineers

    Gender differences in expressed interests in engineering-related fields over a 30-year span

    Get PDF
    Journal ArticleThis study examines gender differences and historical trends of high school student interest in engineering based on ACT data on expressed interest compared with that of students' and ability. Changes have been observed in the interest in engineering fields over time most likely because of societal influences. These influences are especially seen in computer related fields causing speculation that both males and females were influenced by the dot com era but that only male interest was piqued due to the rise of computer games in the late 1990's. Another interesting observation is the number of students stating they are interested in engineering careers but who minimally or poorly prepared based on their ACT math scores. This raises the question of whether these students understand what engineering is, and whether they have been informed of the demands of the major. These students are likely to face retention issues in engineering fields and are often candidates for math remediation. By better understanding the societal influences as well as gender and ability disparities we will have a better understanding of what needs to be done in order to reverse the current trends of gender disparity and lack of interest in engineering fields

    Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays

    Get PDF
    Journal ArticleInterstitial arrays of insulated antennas have shown promise for microwave hyperthermia treatment of deep-seated tumors. Available analytical techniques for predicting the electromagnetic (EM) power deposition of these antennas have been limited to the case of a homogeneous conductive medium surrounding the array. Since tumors and host tissue may differ in their electrical characteristics, it is necessary to consider the impact of this variation in electrical properties and the geometry of the tumor in the calculation of the EM field distribution and power deposition pattern when modeling interstitial antennas

    Many worlds and modality in the interpretation of quantum mechanics: an algebraic approach

    Get PDF
    Many worlds interpretations (MWI) of quantum mechanics avoid the measurement problem by considering every term in the quantum superposition as actual. A seemingly opposed solution is proposed by modal interpretations (MI) which state that quantum mechanics does not provide an account of what `actually is the case', but rather deals with what `might be the case', i.e. with possibilities. In this paper we provide an algebraic framework which allows us to analyze in depth the modal aspects of MWI. Within our general formal scheme we also provide a formal comparison between MWI and MI, in particular, we provide a formal understanding of why --even though both interpretations share the same formal structure-- MI fall pray of Kochen-Specker (KS) type contradictions while MWI escape them.Comment: submitted to the Journal of Mathematical Physic

    Management of late-preterm and term infants with hyperbilirubinaemia in resource-constrained settings.

    Get PDF
    Hyperbilirubinaemia is a ubiquitous transitional morbidity in the vast majority of newborns and a leading cause of hospitalisation in the first week of life worldwide. While timely and effective phototherapy and exchange transfusion are well proven treatments for severe neonatal hyperbilirubinaemia, inappropriate or ineffective treatment of hyperbilirubinaemia, at secondary and tertiary hospitals, still prevails in many poorly-resourced countries accounting for a disproportionately high burden of bilirubin-induced mortality and long-term morbidity. As part of the efforts to curtail the widely reported risks of frequent but avoidable bilirubin-induced neurologic dysfunction (acute bilirubin encephalopathy (ABE) and kernicterus) in low and middle-income countries (LMICs) with significant resource constraints, this article presents a practical framework for the management of late-preterm and term infants (≥ 35 weeks of gestation) with clinically significant hyperbilirubinaemia in these countries particularly where local practice guidelines are lacking. Standard and validated protocols were followed in adapting available evidence-based national guidelines on the management of hyperbilirubinaemia through a collaboration among clinicians and experts on newborn jaundice from different world regions. Tasks and resources required for the comprehensive management of infants with or at risk of severe hyperbilirubinaemia at all levels of healthcare delivery are proposed, covering primary prevention, early detection, diagnosis, monitoring, treatment, and follow-up. Additionally, actionable treatment or referral levels for phototherapy and exchange transfusion are proposed within the context of several confounding factors such as widespread exclusive breastfeeding, infections, blood group incompatibilities and G6PD deficiency, which place infants at high risk of severe hyperbilirubinaemia and bilirubin-induced neurologic dysfunction in LMICs, as well as the limited facilities for clinical investigations and inconsistent functionality of available phototherapy devices. The need to adjust these levels as appropriate depending on the available facilities in each clinical setting and the risk profile of the infant is emphasised with a view to avoiding over-treatment or under-treatment. These recommendations should serve as a valuable reference material for health workers, guide the development of contextually-relevant national guidelines in each LMIC, as well as facilitate effective advocacy and mobilisation of requisite resources for the optimal care of infants with hyperbilirubinaemia at all levels

    Unsteady slip flow of amicropolarnanofluid over an impulsively stretched vertical surface

    Get PDF
    The unsteady mixed convective flow of micropolarnanofluid over an impulsively stretched vertical surface has been examined. A model has been developed to analyze the behavior of nanofluids in presentmicropolar fluids studied numerically for both cases of assisting and opposing flow taking into account the thermal convective boundary condition. A model has been developed to analyze the behavior of nanofluids containing metallic nanoparticles as copper (Cu)and nonmetallic nanoparticles as alumina (A  in water-micropolarnanofluidhave been considered. The governing partial differential equations have been transformed to non-similar differential equations then have been solved numerically by using theRunge-Kutta-Fehlberg method of seventh order (RKF7). The results have been compared with the published results and are found in excellent agreement

    Combination of Vatalanib and a 20-HETE Synthesis Inhibitor Results in Decreased Tumor Growth in an Animal Model of Human Glioma

    Get PDF
    BACKGROUND: Due to the hypervascular nature of glioblastoma (GBM), antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N\u27-(4-butyl-2 methylphenyl)formamidine (HET0016), which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis. The aims of the studies were to determine 1) whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2) whether the treatment schedule would have a crucial impact on controlling GBM. METHODS: U251 human glioma cells (4Ă—10(5)) were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8-21 days treatment) of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0-21 days treatment) was to mimic cases following radiation therapy or surgery. There were four different treatment groups: vehicle, vatalanib (oral treatment 50 mg/kg/d), HET0016 (intraperitoneal treatment 10 mg/kg/d), and combined (vatalanib and HET0016). Following scheduled treatments, all animals underwent magnetic resonance imaging on day 22, followed by euthanasia. Brain specimens were equally divided for immunohistochemistry and protein array analysis. RESULTS: Our results demonstrated a trend that HET0016, alone or in combination with vatalanib, is capable of controlling the tumor growth compared with that of vatalanib alone, indicating attenuation of the unwanted effect of vatalanib. When both vatalanib and HET0016 were administered together on the day of the tumor implantation (0-21 days treatment), tumor volume, tumor blood volume, permeability, extravascular and extracellular space volume, tumor cell proliferation, and cell migration were decreased compared with that of the vehicle-treated group. CONCLUSION: HET0016 is capable of controlling tumor growth and migration, but these effects are dependent on the timing of drug administration. The addition of HET0016 to vatalanib may attenuate the unwanted effect of vatalanib

    Potential of new isolates of Dunaliella Salina for natural β-Carotene production

    Get PDF
    The halotolerant microalga Dunaliella salina has been widely studied for natural β-carotene production. This work shows biochemical characterization of three newly isolated Dunaliella salina strains, DF15, DF17, and DF40, compared with D. salina CCAP 19/30 and D. salina UTEX 2538 (also known as D. bardawil). Although all three new strains have been genetically characterized as Dunaliella salina strains, their ability to accumulate carotenoids and their capacity for photoprotection against high light stress are different. DF15 and UTEX 2538 reveal great potential for producing a large amount of β-carotene and maintained a high rate of photosynthesis under light of high intensity; however, DF17, DF40, and CCAP 19/30 showed increasing photoinhibition with increasing light intensity, and reduced contents of carotenoids, in particular β-carotene, suggesting that the capacity of photoprotection is dependent on the cellular content of carotenoids, in particular β-carotene. Strong positive correlations were found between the cellular content of all-trans β-carotene, 9-cis β-carotene, all-trans α-carotene and zeaxanthin but not lutein in the D. salina strains. Lutein was strongly correlated with respiration in photosynthetic cells and strongly related to photosynthesis, chlorophyll and respiration, suggesting an important and not hitherto identified role for lutein in coordinated control of the cellular functions of photosynthesis and respiration in response to changes in light conditions, which is broadly conserved in Dunaliella strains. Statistical analysis based on biochemical data revealed a different grouping strategy from the genetic classification of the strains. The significance of these data for strain selection for commercial carotenoid production is discussed

    AC133+ progenitor cells as gene delivery vehicle and cellular probe in subcutaneous tumor models: a preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite enormous progress in gene therapy for breast cancer, an optimal systemic vehicle for delivering gene products to the target tissue is still lacking. The purpose of this study was to determine whether AC133+ progenitor cells (APC) can be used as both gene delivery vehicles and cellular probes for magnetic resonance imaging (MRI). In this study, we used superparamagentic iron oxide (SPIO)-labeled APCs to carry the human sodium iodide symporter (hNIS) gene to the sites of implanted breast cancer in mouse model. In vivo real time tracking of these cells was performed by MRI and expression of hNIS was determined by Tc-99m pertechnetate (Tc-99m) scan.</p> <p>Results</p> <p>Three million human breast cancer (MDA-MB-231) cells were subcutaneously implanted in the right flank of nude mice. APCs, isolated from fresh human cord blood, were genetically transformed to carry the hNIS gene using adenoviral vectors and magnetically labeled with ferumoxides-protamine sulfate (FePro) complexes. Magnetically labeled genetically transformed cells were administered intravenously in tumor bearing mice when tumors reached 0.5 cm in the largest dimension. MRI and single photon emission computed tomography (SPECT) images were acquired 3 and 7 days after cell injection, with a 7 Tesla animal MRI system and a custom built micro-SPECT using Tc-99m, respectively. Expression of hNIS in accumulated cells was determined by staining with anti-hNIS antibody. APCs were efficiently labeled with ferumoxide-protamine sulfate (FePro) complexes and transduced with hNIS gene. Our study showed not only the accumulation of intravenously administered genetically transformed, magnetically labeled APCs in the implanted breast cancer, but also the expression of hNIS gene at the tumor site. Tc-99m activity ratio (tumor/non-tumor) was significantly different between animals that received non-transduced and transduced cells (P < 0.001).</p> <p>Conclusion</p> <p>This study indicates that genetically transformed, magnetically labeled APCs can be used both as delivery vehicles and cellular probes for detecting <it>in vivo </it>migration and homing of cells. Furthermore, they can potentially be used as a gene carrier system for the treatment of tumor or other diseases.</p

    CDC Grand Rounds: National Amyotrophic Lateral Sclerosis (ALS) Registry Impact, Challenges, and Future Directions

    Get PDF
    Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig’s disease, is a rapidly progressive fatal neurologic disease. Currently, there is no cure for ALS and the available treatments only extend life by an average of a few months. The majority of ALS patients die within 2–5 years of diagnosis, though survival time varies depending on disease progression (1,2). For approximately 10% of patients, ALS is familial, meaning it and has a genetic component; the remaining 90% have sporadic ALS, where etiology is unknown, but might be linked to environmental factors such as chemical exposures (e.g., heavy metals, pesticides) and occupational history (3). Like many other noncommunicable conditions, ALS is a nonnotifiable disease in the United States; therefore, the federal government lacks reliable incidence and prevalence estimates for the United States. During October 2008, Congress passed the ALS Registry Act (4), directing CDC and its sister agency, the Agency for Toxic Substances and Disease Registry, to create a population-based ALS registry for the United States. The main objectives of the National ALS Registry, which was launched in October 2010, are to describe the national incidence and prevalence of ALS; describe the demographics of persons living with ALS; and examine risk factors for the disease (4,5). During January 2017, the Registry launched the National ALS Biorepository, which aims to promote research in areas including biomarkers, genetics, and environmental exposures to heavy metals or organophosphates (6,7)
    • …
    corecore