10 research outputs found

    CRF2 receptor-deficiency eliminates opiate withdrawal distress without impairing stress coping

    No full text
    The opiate withdrawal syndrome is a severe stressor that powerfully triggers addictive drug intake. However, no treatment yet exists that effectively relieves opiate withdrawal distress and spares stress-coping abilities. The corticotropin-releasing factor (CRF) system mediates the stress response, but its role in opiate withdrawal distress and bodily strategies aimed to cope with is unknown. CRF-like signaling is transmitted by two receptor pathways, termed CRF(1) and CRF(2). Here, we report that CRF(2) receptor-deficient (CRF(2)(-/-)) mice lack the dysphoria-like and the anhedonia-like states of opiate withdrawal. Moreover, in CRF(2)(-/-) mice opiate withdrawal does not increase the activity of brain dynorphin, CRF and periaqueductal gray circuitry, which are major substrates of opiate withdrawal distress. Nevertheless, CRF(2) receptor-deficiency does not impair brain, neuroendocrine and autonomic stress-coping responses to opiate withdrawal. The present findings point to the CRF(2) receptor pathway as a unique target to relieve opiate withdrawal distress without impairing stress-coping abilities.Molecular Psychiatry advance online publication, 27 September 2011; doi:10.1038/mp.2011.119

    Disruption of the CRF(2) receptor pathway decreases the somatic expression of opiate withdrawal.

    No full text
    Escape from the extremely aversive opiate withdrawal symptoms powerfully motivates compulsive drug-seeking and drug-taking behaviors. The corticotropin-releasing factor (CRF) system is hypothesized to mediate the motivational properties of drug dependence. CRF signaling is transmitted by two receptor pathways, termed CRF(1) and CRF(2). To investigate the role for the CRF(2) receptor pathway in somatic opiate withdrawal, in the present study we used genetically engineered mice deficient in the CRF(2) receptor (CRF(2)-/-). We employed a novel, clinically relevant mouse model of 'spontaneous' opiate withdrawal as well as a classical opioid receptor antagonist (naloxone)-precipitated opiate withdrawal paradigm. To induce opiate dependence, mice were treated with intermittent escalating morphine doses (20-100 mg/kg, i.p.). We found that 8-128 h after the last opiate injection, CRF(2)-/- mice showed decreased levels of major somatic signs of spontaneous opiate withdrawal, such as paw tremor and wet dog shake, as compared to wild-type mice. Similarly, challenge with naloxone 2 h after the last morphine injection induced lower levels of paw tremor and wet dog shake in CRF(2)-/- mice as compared to wild-type mice. Despite the differences in somatic signs, wild-type and CRF(2)-/- mice displayed similar plasma corticosterone responses to opiate dosing and withdrawal, indicating a marginal role for the hypothalamus-pituitary-adrenal axis in the CRF(2) receptor mediation of opiate withdrawal. Our results unravel a novel role for the CRF(2) receptor pathway in opiate withdrawal. The CRF(2) receptor pathway might be a critical target of therapies aimed at alleviating opiate withdrawal symptoms and reducing relapse to drug intake
    corecore