896 research outputs found

    Geometrical Construction of Heterogeneous Loop Amplitudes in 2D Gravity

    Get PDF
    We study a disk amplitude which has a complicated heterogeneous matter configuration on the boundary in a system of the (3,4) conformal matter coupled to two-dimensional gravity. It is analyzed using the two-matrix chain model in the large N limit. We show that the disk amplitude calculated by Schwinger-Dyson equations can completely be reproduced through purely geometrical consideration. From this result, we speculate that all heterogeneous loop amplitudes can be derived from the geometrical consideration and the consistency among relevant amplitudes.Comment: 13 pages, 11 figure

    A Note on String Field Theory in the Temporal Gauge

    Full text link
    In this note, we review the recent developments in the string field theory in the temporal gauge. (Based on a talk presented by N.I. in the workshop {\it Quantum Field Theory, Integrable Models and Beyond}, Yukawa Institute for Theoretical Physics, Kyoto University, 14-18 February 1994.)Comment: 20 pages, KEK-TH-411, LaTex fil

    Loop Equations for + and - Loops in c = 1/2 Non-Critical String Theory

    Get PDF
    New loop equations for all genera in c=12c = \frac{1}{2} non-critical string theory are constructed. Our loop equations include two types of loops, loops with all Ising spins up (+ loops) and those with all spins down ( - loops). The loop equations generate an algebra which is a certain extension of W3W_3 algebra and are equivalent to the W3W_3 constraints derived before in the matrix-model formulation of 2d gravity. Application of these loop equations to construction of Hamiltonian for c=12c = \frac{1}{2} string field theory is considered.Comment: 21 pages, LaTex file, no figure

    Stochastic Hamiltonian for Non-Critical String Field Theories from Double-Scaled Matrix Models

    Full text link
    We present detailed discussions on the stochastic Hamiltonians for non-critical string field theories on the basis of matrix models. Beginning from the simplest c=0c=0 case, we derive the explicit forms of the Hamiltonians for the higher critical case k=3k=3 (which corresponds to c=22/5c=-22/5) and for the case c=1/2c=1/2, directly from the double-scaled matrix models. In particular, for the two-matrix case, we do not put any restrictions on the spin configurations of the string fields. The properties of the resulting infinite algebras of Schwinger-Dyson operators associated with the Hamiltonians and the derivation of the Virasoro and W3W_3 algebras therefrom are also investigated. Our results suggest certain universal structure of the stochastic Hamiltonians, which might be useful for an attempt towards a background independent string field theory.Comment: 70 pages, LaTeX, typographical errors are corrected, to be published in Phys. Rev.

    High-resolution CaCO3 variation of core COR-1bPC in the Conrad Rise in the Indian Sector of the East Antarctic

    Get PDF
    第3回極域科学シンポジウム 横断セッション「海・陸・氷床から探る後期新生代の南極寒冷圏環境変動」11月26日(月) 国立国語研究所 2階講

    Editorial: hypotheses about protein folding - the proteomic code and wonderfolds

    Get PDF
    Theoretical biology journals can contribute in many ways to the progress of knowledge. They are particularly well-placed to encourage dialogue and debate about hypotheses addressing problematical areas of research. An online journal provides an especially useful forum for such debate because of the option of posting comments within days of the publication of a contentious article

    Age trajectories of glycaemic traits in non-diabetic South Asian and white individuals: the Whitehall II cohort study.

    Get PDF
    South Asian individuals have an increased prevalence of type 2 diabetes, but little is known about the development of glycaemic traits in this ethnic group. We compared age-related changes in glycaemic traits between non-diabetic South Asian and white participants

    A geometric approach to free variable loop equations in discretized theories of 2D gravity

    Full text link
    We present a self-contained analysis of theories of discrete 2D gravity coupled to matter, using geometric methods to derive equations for generating functions in terms of free (noncommuting) variables. For the class of discrete gravity theories which correspond to matrix models, our method is a generalization of the technique of Schwinger-Dyson equations and is closely related to recent work describing the master field in terms of noncommuting variables; the important differences are that we derive a single equation for the generating function using purely graphical arguments, and that the approach is applicable to a broader class of theories than those described by matrix models. Several example applications are given here, including theories of gravity coupled to a single Ising spin (c=1/2c = 1/2), multiple Ising spins (c=k/2c = k/2), a general class of two-matrix models which includes the Ising theory and its dual, the three-state Potts model, and a dually weighted graph model which does not admit a simple description in terms of matrix models.Comment: 40 pages, 8 figures, LaTeX; final publication versio

    Exact Renormalization Group and Loop Equation

    Get PDF
    We propose a gauge invariant formulation of the exact renormalization group equation for nonsupersymmetric pure U(N) Yang-Mills theory, based on the construction by Tim Morris. In fact we show that our renormalization group equation amounts to a regularized version of the loop equation, thereby providing a direct relation between the exact renormalization group and the Schwinger-Dyson equations. We also discuss a possible implication of our formulation to the holographic correspondence of the bulk gravity and the boundary gauge theory.Comment: 13 pages, Latex, References added. An error in eq. (6) fixed and a few corrrections accordingly. Results unchange
    corecore