32 research outputs found

    Ergodic behavior of locally regulated branching populations

    Full text link
    For a class of processes modeling the evolution of a spatially structured population with migration and a logistic local regulation of the reproduction dynamics, we show convergence to an upper invariant measure from a suitable class of initial distributions. It follows from recent work of Alison Etheridge that this upper invariant measure is nontrivial for sufficiently large super-criticality in the reproduction. For sufficiently small super-criticality, we prove local extinction by comparison with a mean field model. This latter result extends also to more general local reproduction regulations.Comment: Published at http://dx.doi.org/10.1214/105051606000000745 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Convergence of tamed Euler schemes for a class of stochastic evolution equations

    Get PDF
    We prove stability and convergence of a full discretization for a class of stochastic evolution equations with super-linearly growing operators appearing in the drift term. This is done using the recently developed tamed Euler method, which uses a fully explicit time stepping, coupled with a Galerkin scheme for the spatial discretization

    Convergence of the stochastic Euler scheme for locally Lipschitz coefficients

    Full text link
    Stochastic differential equations are often simulated with the Monte Carlo Euler method. Convergence of this method is well understood in the case of globally Lipschitz continuous coefficients of the stochastic differential equation. The important case of superlinearly growing coefficients, however, has remained an open question. The main difficulty is that numerically weak convergence fails to hold in many cases of superlinearly growing coefficients. In this paper we overcome this difficulty and establish convergence of the Monte Carlo Euler method for a large class of one-dimensional stochastic differential equations whose drift functions have at most polynomial growth.Comment: Published at http://www.springerlink.com/content/g076w80730811vv3 in the Foundations of Computational Mathematics 201

    Asymptotic behaviour of random tridiagonal Markov chains in biological applications

    Full text link
    Discrete-time discrete-state random Markov chains with a tridiagonal generator are shown to have a random attractor consisting of singleton subsets, essentially a random path, in the simplex of probability vectors. The proof uses the Hilbert projection metric and the fact that the linear cocycle generated by the Markov chain is a uniformly contractive mapping of the positive cone into itself. The proof does not involve probabilistic properties of the sample path and is thus equally valid in the nonautonomous deterministic context of Markov chains with, say, periodically varying transitions probabilities, in which case the attractor is a periodic path.Comment: 13 pages, 22 bibliography references, submitted to DCDS-B, added references and minor correction

    An integral method for solving nonlinear eigenvalue problems

    Full text link
    We propose a numerical method for computing all eigenvalues (and the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that lie within a given contour in the complex plane. The method uses complex integrals of the resolvent operator, applied to at least kk column vectors, where kk is the number of eigenvalues inside the contour. The theorem of Keldysh is employed to show that the original nonlinear eigenvalue problem reduces to a linear eigenvalue problem of dimension kk. No initial approximations of eigenvalues and eigenvectors are needed. The method is particularly suitable for moderately large eigenvalue problems where kk is much smaller than the matrix dimension. We also give an extension of the method to the case where kk is larger than the matrix dimension. The quadrature errors caused by the trapezoid sum are discussed for the case of analytic closed contours. Using well known techniques it is shown that the error decays exponentially with an exponent given by the product of the number of quadrature points and the minimal distance of the eigenvalues to the contour

    An introduction to multilevel Monte Carlo for option valuation

    Get PDF
    Monte Carlo is a simple and flexible tool that is widely used in computational finance. In this context, it is common for the quantity of interest to be the expected value of a random variable defined via a stochastic differential equation. In 2008, Giles proposed a remarkable improvement to the approach of discretizing with a numerical method and applying standard Monte Carlo. His multilevel Monte Carlo method offers an order of speed up given by the inverse of epsilon, where epsilon is the required accuracy. So computations can run 100 times more quickly when two digits of accuracy are required. The multilevel philosophy has since been adopted by a range of researchers and a wealth of practically significant results has arisen, most of which have yet to make their way into the expository literature. In this work, we give a brief, accessible, introduction to multilevel Monte Carlo and summarize recent results applicable to the task of option evaluation.Comment: Submitted to International Journal of Computer Mathematics, special issue on Computational Methods in Financ

    Convergence in Hölder norms with applications to Monte Carlo methods in infinite dimensions

    No full text
    We show that if a sequence of piecewise affine linear processes converges in the strong sense with a positive rate to a stochastic process that is strongly Hölder continuous in time, then this sequence converges in the strong sense even with respect to much stronger Hölder norms and the convergence rate is essentially reduced by the Hölder exponent. Our first application hereof establishes pathwise convergence rates for spectral Galerkin approximations of stochastic partial differential equations. Our second application derives strong convergence rates of multilevel Monte Carlo approximations of expectations of Banach-space-valued stochastic processes
    corecore