38 research outputs found

    Risk-Based Construction Inspection

    Get PDF
    Construction inspection is a critical component in the quality assurance (QA) program to ensure the quality and long-term performance of pavements. Over the years, INDOT has been developing and modifying its standard specification to set requirements for construction inspection and material testing. With the retirement of experienced employees, INDOT is challenged with the lack of knowledge to effectively inspect the critical elements of construction results/deliverables such as pavement, soil embankment, and bridge (decks). There is a critical need for INDOT to allocate limited resources to the riskiest areas and equip construction inspectors with necessary knowledge to conduct inspection, ensure the quality of construction results, and minimize risks to INDOT. This study developed a risk-based inspection guide that has addressed the aforementioned problems of shortage in staffing and loss and lack of knowledge by providing answers in aspects of what, when, how, and how often to inspect. A comprehensive list of testing and inspection activities were extracted from INDOT’s material testing manual, INDOT’s standard specification, and the QA implementation at the Ohio River Bridge (ORB) project. This list was narrowed down to a core set of items based on survey responses and interviews with INDOT domain experts. Testing and inspection activities in the core set were aligned with the construction process. The risk associated with each inspection activity was assessed by considering both the probability of failure and consequence severity of failure in four dimensions: cost, time, quality, and safety. A composite risk index was developed as a single measure for the overall risk. All inspection activities were prioritized based on the composite index. For implementation, a linking mechanism was developed to link inspection activity, pay item, and check items (extracted from specification). This linking mechanism aligns with the business process of construction inspection at INDOT: starting with a pay item, field inspectors retrieve the associated check items and their inspection priority (based on risk), inspection frequency, and inspection criteria. A digital, ontology- and risk-based inspection system was proposed and its conceptual model was delivered to INDOT for its incorporation in the field application of construction documentation, a component of the e-Construction initiatives at INDOT. It will be tested on Project R-30397 through a pilot study

    Trisomy of a Down Syndrome Critical Region Globally Amplifies Transcription via HMGN1 Overexpression

    Get PDF
    Down syndrome (DS, trisomy 21) is associated with developmental abnormalities and increased leukemia risk. To reconcile chromatin alterations with transcriptome changes, we performed paired exogenous spike-in normalized RNA and chromatin immunoprecipitation sequencing in DS models. Absolute normalization unmasks global amplification of gene expression associated with trisomy 21. Overexpression of the nucleosome binding protein HMGN1 (encoded on chr21q22) recapitulates transcriptional changes seen with triplication of a Down syndrome critical region on distal chromosome 21, and HMGN1 is necessary for B cell phenotypes in DS models. Absolute exogenous-normalized chromatin immunoprecipitation sequencing (ChIP-Rx) also reveals a global increase in histone H3K27 acetylation caused by HMGN1. Transcriptional amplification downstream of HMGN1 is enriched for stage-specific programs of B cells and B cell acute lymphoblastic leukemia, dependent on the developmental cellular context. These data offer a mechanistic explanation for DS transcriptional patterns and suggest that further study of HMGN1 and RNA amplification in diverse DS phenotypes is warranted. How trisomy 21 contributes to Down syndrome phenotypes, including increased leukemia risk, is not well understood. Mowery et al. use per-cell normalization approaches to reveal global transcriptional amplification in Down syndrome models. HMGN1 overexpression is sufficient to induce these alterations and promotes lineage-associated transcriptional programs, signaling, and B cell progenitor phenotypes

    Does public awareness increase support for invasive species management?:Promising evidence across taxa and landscape types

    Get PDF
    Management of invasive species often raises substantial conflicts of interest. Since such conflicts can hamper proposed management actions, managers, decision makers and researchers increasingly recognize the need to consider the social dimensions of invasive species management. In this exploratory study, we aimed (1) to explore whether species’ taxonomic position (i.e. animals vs. plants) and type of invaded landscape (i.e. urban vs. nonurban) might influence public perception about the management of invasive species, and (2) to assess the potential of public awareness to increase public support for invasive species management. We reviewed the scientific literature on the conflicts of interest around the management of alien species and administered two-phased questionnaires (before and after providing information on the target species and its management) to members of the public in South Africa and the UK (n = 240). Our review suggests that lack of public support for the management of invasive animals in both urban and non-urban areas derives mainly from moralistic value disagreements, while the management of invasive plants in non-urban areas mostly causes conflicts based on utilitarian value disagreements. Despite these general trends, conflicts are context dependent and can originate from a wide variety of different views. Notably, informing the public about the invasive status and negative impacts of the species targeted for management appeared to increase public support for the management actions. Therefore, our results align with the view that increased public awareness might increase the public support for the management of invasive species, independent of taxonomic position and type of landscape

    Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies

    Get PDF
    Using a genome-scale, lentivirally delivered shRNA library, we performed massively parallel pooled shRNA screens in 216 cancer cell lines to identify genes that are required for cell proliferation and/or viability. Cell line dependencies on 11,000 genes were interrogated by 5 shRNAs per gene. The proliferation effect of each shRNA in each cell line was assessed by transducing a population of 11M cells with one shRNA-virus per cell and determining the relative enrichment or depletion of each of the 54,000 shRNAs after 16 population doublings using Next Generation Sequencing. All the cell lines were screened using standardized conditions to best assess differential genetic dependencies across cell lines. When combined with genomic characterization of these cell lines, this dataset facilitates the linkage of genetic dependencies with specific cellular contexts (e.g., gene mutations or cell lineage). To enable such comparisons, we developed and provided a bioinformatics tool to identify linear and nonlinear correlations between these features

    Self-Similarity-Based Compression of Point Clouds, with Application to Ray Tracing Abstract

    No full text
    Many real-world, scanned surfaces contain repetitive structures, like bumps, ridges, creases, and so on. We present a compression technique that exploits self-similarity within a point-sampled surface. Our method replaces similar surface patches with an instance of a representative patch. We use a concise shape descriptor to identify and cluster similar patches. Decoding is achieved through simple instancing of the representative patches. Encoding is efficient, and can be applied to large datasets consisting of millions of points. Moreover, our technique offers random access to the compressed data, making it applicable to ray tracing, and easily allows for storing additional point attributes, like normals. Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational geometry and object modeling- Curve, surface, solid and object representations; E.4 [Data]: Coding and information theory- Data compaction and compression 1
    corecore