14 research outputs found
Intelligent Financial Fraud Detection Practices: An Investigation
Financial fraud is an issue with far reaching consequences in the finance
industry, government, corporate sectors, and for ordinary consumers. Increasing
dependence on new technologies such as cloud and mobile computing in recent
years has compounded the problem. Traditional methods of detection involve
extensive use of auditing, where a trained individual manually observes reports
or transactions in an attempt to discover fraudulent behaviour. This method is
not only time consuming, expensive and inaccurate, but in the age of big data
it is also impractical. Not surprisingly, financial institutions have turned to
automated processes using statistical and computational methods. This paper
presents a comprehensive investigation on financial fraud detection practices
using such data mining methods, with a particular focus on computational
intelligence-based techniques. Classification of the practices based on key
aspects such as detection algorithm used, fraud type investigated, and success
rate have been covered. Issues and challenges associated with the current
practices and potential future direction of research have also been identified.Comment: Proceedings of the 10th International Conference on Security and
Privacy in Communication Networks (SecureComm 2014
Peace And Good Will Towards Men
Illustration of angel and rays of lighthttps://scholarsjunction.msstate.edu/cht-sheet-music/12104/thumbnail.jp
Mathematical modelling of animate and intentional motion.
Our aim is to enable a machine to observe and interpret the behaviour of others. Mathematical models are employed to describe certain biological motions. The main challenge is to design models that are both tractable and meaningful. In the first part we will describe how computer vision techniques, in particular visual tracking, can be applied to recognize a small vocabulary of human actions in a constrained scenario. Mainly the problems of viewpoint and scale invariance need to be overcome to formalize a general framework. Hence the second part of the article is devoted to the question whether a particular human action should be captured in a single complex model or whether it is more promising to make extensive use of semantic knowledge and a collection of low-level models that encode certain motion primitives. Scene context plays a crucial role if we intend to give a higher-level interpretation rather than a low-level physical description of the observed motion. A semantic knowledge base is used to establish the scene context. This approach consists of three main components: visual analysis, the mapping from vision to language and the search of the semantic database. A small number of robust visual detectors is used to generate a higher-level description of the scene. The approach together with a number of results is presented in the third part of this article
An end-to-end system for content-based video retrieval using behavior, actions, and appearance with interactive query refinement
10.1109/AVSS.2015.7301807AVSS 2015 - 12th IEEE International Conference on Advanced Video and Signal Based Surveillance730180