2,405 research outputs found

    Magnetic phases of two-component ultracold bosons in an optical lattice

    Get PDF
    We investigate spin-order of ultracold bosons in an optical lattice by means of Dynamical Mean-Field Theory. A rich phase diagram with anisotropic magnetic order is found, both for the ground state and at finite temperatures. Within the Mott insulator, a ferromagnetic to antiferromagnetic transition can be tuned using a spin-dependent optical lattice. In addition we find a supersolid phase, in which superfluidity coexists with antiferromagnetic spin order. We present detailed phase diagrams at finite temperature for the experimentally realized heteronuclear 87Rb - 41K mixture in a three-dimensional optical lattice.Comment: 6 pages, 4 figures, revised and published versio

    Supersolid Bose-Fermi Mixtures in Optical Lattices

    Full text link
    We study a mixture of strongly interacting bosons and spinless fermions with on-site repulsion in a three-dimensional optical lattice. For this purpose we develop and apply a generalized DMFT scheme, which is exact in infinite dimensions and reliably describes the full range from weak to strong coupling. We restrict ourselves to half filling. For weak Bose-Fermi repulsion a supersolid forms, in which bosonic superfluidity coexists with charge-density wave order. For stronger interspecies repulsion the bosons become localized while the charge density wave order persists. The system is unstable against phase separation for weak repulsion among the bosons.Comment: 4 pages, 5 pictures, Published versio

    One-parameter Superscaling at the Metal-Insulator Transition in Three Dimensions

    Full text link
    Based on the spectral statistics obtained in numerical simulations on three dimensional disordered systems within the tight--binding approximation, a new superuniversal scaling relation is presented that allows us to collapse data for the orthogonal, unitary and symplectic symmetry (β=1,2,4\beta=1,2,4) onto a single scaling curve. This relation provides a strong evidence for one-parameter scaling existing in these systems which exhibit a second order phase transition. As a result a possible one-parameter family of spacing distribution functions, Pg(s)P_g(s), is given for each symmetry class β\beta, where gg is the dimensionless conductance.Comment: 4 pages in PS including 3 figure

    Quantum tunneling induced Kondo effect in single molecular magnets

    Full text link
    We consider transport through a single-molecule magnet strongly coupled to metallic electrodes. We demonstrate that for half-integer spin of the molecule electron- and spin-tunneling \emph{cooperate} to produce both quantum tunneling of the magnetic moment and a Kondo effect in the linear conductance. The Kondo temperature depends sensitively on the ratio of the transverse and easy-axis anisotropies in a non-monotonic way. The magnetic symmetry of the transverse anisotropy imposes a selection rule on the total spin for the occurrence of the Kondo effect which deviates from the usual even-odd alternation.Comment: 4 pages, 4 figure

    A De-biased Direct Question Approach to Measuring Consumers' Willingness to Pay

    Get PDF
    Knowledge of consumers' willingness to pay (WTP) is a prerequisite to profitable price-setting. To gauge consumers' WTP, practitioners often rely on a direct single question approach in which consumers are asked to explicitly state their WTP for a product. Despite its popularity among practitioners, this approach has been found to suffer from hypothetical bias. In this paper, we propose a rigorous method that improves the accuracy of the direct single question approach. Specifically, we systematically assess the hypothetical biases associated with the direct single question approach and explore ways to de-bias it. Our results show that by using the de-biasing procedures we propose, we can generate a de-biased direct single question approach that is accu-rate enough to be useful for managerial decision-making. We validate this approach with two studies in this paper.Comment: Market Research, Pricing, Demand Estimation, Direct Estimation, Single Question Approach, Choice Experiments, Willingness to Pay, Hypothetical Bia

    N\'{e}el transition of lattice fermions in a harmonic trap: a real-space DMFT study

    Get PDF
    We study the magnetic ordering transition for a system of harmonically trapped ultracold fermions with repulsive interactions in a cubic optical lattice, within a real-space extension of dynamical mean-field theory (DMFT). Using a quantum Monte Carlo impurity solver, we establish that antiferromagnetic correlations are signaled, at strong coupling, by an enhanced double occupancy. This signature is directly accessible experimentally and should be observable well above the critical temperature for long-range order. Dimensional aspects appear less relevant than naively expected.Comment: 4 pages, 4 figure

    Shape Analysis of the Level Spacing Distribution around the Metal Insulator Transition in the Three Dimensional Anderson Model

    Full text link
    We present a new method for the numerical treatment of second order phase transitions using the level spacing distribution function P(s)P(s). We show that the quantities introduced originally for the shape analysis of eigenvectors can be properly applied for the description of the eigenvalues as well. The position of the metal--insulator transition (MIT) of the three dimensional Anderson model and the critical exponent are evaluated. The shape analysis of P(s)P(s) obtained numerically shows that near the MIT P(s)P(s) is clearly different from both the Brody distribution and from Izrailev's formula, and the best description is of the form P(s)=c1sexp(c2s1+β)P(s)=c_1\,s\exp(-c_2\,s^{1+\beta}), with β0.2\beta\approx 0.2. This is in good agreement with recent analytical results.Comment: 14 pages in plain TeX, 6 figures upon reques

    Kondo-transport spectroscopy of single molecule magnets

    Full text link
    We demonstrate that in a single molecule magnet (SMM) strongly coupled to electrodes the Kondo effect involves all magnetic excitations. This Kondo effect is induced by the quantum tunneling of the magnetic moment (QTM). Importantly, the Kondo temperature TKT_K can be much larger than the magnetic splittings. We find a strong modulation of the Kondo effect as function of the transverse anisotropy parameter or a longitudinal magnetic field. For both integer and half-integer spin this can be used for an accurate transport spectroscopy of the magnetic states in low magnetic fields on the order of the easy-axis anisotropy parameter. We set up a relationship between the Kondo effects for successive integer and half-integer spins.Comment: 5 pages, 3 figure

    MAXIMUM AND COUPLING OF THE SINE-GORDON FIELD

    Get PDF
    For 0<β<6π0<\beta<6\pi, we prove that the distribution of the centred maximum of the ϵ\epsilon-regularised continuum sine-Gordon field on the two-dimensional torus converges to a randomly shifted Gumbel distribution as ϵ0\epsilon \to 0. Our proof relies on a strong coupling at all scales of the sine-Gordon field with the Gaussian free field, of independent interest, and extensions of existing methods for the maximum of the lattice Gaussian free field
    corecore