6 research outputs found

    Vacuum structure and string tension in Yang-Mills dimeron ensembles

    Full text link
    We numerically simulate ensembles of SU(2) Yang-Mills dimeron solutions with a statistical weight determined by the classical action and perform a comprehensive analysis of their properties. In particular, we examine the extent to which these ensembles capture topological and confinement properties of the Yang-Mills vacuum. This further allows us to test the classic picture of meron-induced quark confinement as triggered by dimeron dissociation. At small bare couplings, spacial, topological-charge and color correlations among the dimerons generate a short-range order which screens topological charges. With increasing coupling this order weakens rapidly, however, in part because the dimerons gradually dissociate into their meron constituents. Monitoring confinement properties by evaluating Wilson-loop expectation values, we find the growing disorder due to these progressively liberated merons to generate a finite and (with the coupling) increasing string tension. The short-distance behavior of the static quark-antiquark potential, on the other hand, is dominated by small, "instanton-like" dimerons. String tension, action density and topological susceptibility of the dimeron ensembles in the physical coupling region turn out to be of the order of standard values. Hence the above results demonstrate without reliance on weak-coupling or low-density approximations that the dissociating dimeron component in the Yang-Mills vacuum can indeed produce a meron-populated confining phase. The density of coexisting, hardly dissociated and thus instanton-like dimerons seems to remain large enough, on the other hand, to reproduce much of the additional phenomenology successfully accounted for by non-confining instanton vacuum models. Hence dimeron ensembles should provide an efficient basis for a rather complete description of the Yang-Mills vacuum.Comment: 36 pages, 17 figure

    The Forkhead Transcription Factor Foxi1 Is a Master Regulator of Vacuolar H+-ATPase Proton Pump Subunits in the Inner Ear, Kidney and Epididymis

    Get PDF
    The vacuolar H+-ATPase dependent transport of protons across cytoplasmic membranes in FORE (forkhead related) cells of endolymphatic epithelium in the inner ear, intercalated cells of collecting ducts in the kidney and in narrow and clear cells of epididymis require expression of several subunits that assemble into a functional multimeric proton pump. We demonstrate that expression of four such subunits A1, B1, E2 and a4 all co-localize with the forkhead transcription factor Foxi1 in a subset of epithelial cells at these three locations. In cells, of such epithelia, that lack Foxi1 we fail to identify any expression of A1, B1, E2 and a4 demonstrating an important role for the transcription factor Foxi1 in regulating subunit availability. Promoter reporter experiments, electrophoretic mobility shift assays (EMSA) and site directed mutagenesis demonstrate that a Foxi1 expression vector can trans-activate an a4-promoter reporter construct in a dose dependent manner. Furthermore, we demonstrate using chromatin immunoprecipitation (ChIP) assays that Foxi1-dependent activation to a large extent depends on cis-elements at position −561/−547 in the a4 promoter. Thus, we provide evidence that Foxi1 is necessary for expression of at least four subunits in three different epithelia and most likely is a major determinant for proper assembly of a functional vacuolar H+-ATPase complex at these locations

    Does Size Matter? The Impact of Changes in Household Structure on Income Distribution in Germany

    No full text
    In Germany, two observations can be made over the past 20 years: First, income inequality has been constantly increasing while, second, the average household size has been declining dramatically. The analysis of income distribution relies on equivalence-weighted incomes which take into account household size. Therefore, there is an obvious link between these two developments. The aim of the paper is to quantify how the trend towards smaller households has influenced the change in income distribution. In order to do so, we are using a decomposition of changes in inequality measures over time allowing for a separation between wage and demographic effects respectively. We propose similar decompositions for the change in poverty and richness as well and compare them with results that were obtained by a re-weighting procedure. Our results show that the income gap would also have increased without the demographic trend. But its level would be lower than it actually is. In addition, the demographic effect turns out to be larger for incomes before tax and benefits
    corecore