209 research outputs found
Comparative role of salps and other zooplankton in the cycling and transport of selected elements and natural radionuclides in Mediterranean waters
Salps, salp fecal pellets and other zooplankton species were analyzed for a suite of elements and natural radionuclides to assess their role in the biogeochemical cycling of nuclides in oceanic waters. The nuclide/Al ratios in organisms normalized to the same ratio in crustal rock indicated that Ca, Sr, Zn, Cu, U, 210Po, and 210Pb are enriched in the organisms. The concentrations of Fe, Al, Th isotopes and 210Pb in salps and fecal pellets were about an order of magnitude higher than those in salps, whereas Ca, Cu, Zn, Mn and Po were higher by factors of about 2-5. Fluxes via salp defecation were higher than those which have been measured in crustacean zooplankton species, a result primarily due to the high defecation rates characteristic of salps. High nuclide levels in salp fecal pellets coupled with high defecation rates and presumed high salp biomass in many areas underscore the importance of these indiscriminate filter feeders in packaging and transporting to depth particulate-associated nuclides in surface waters
Facet ridge end points in crystal shapes
Equilibrium crystal shapes (ECS) near facet ridge end points (FRE) are
generically complex. We study the body-centered solid-on-solid model on a
square lattice with an enhanced uniaxial interaction range to test the
stability of the so-called stochastic FRE point where the model maps exactly
onto one dimensional Kardar-Parisi-Zhang type growth and the local ECS is
simple. The latter is unstable. The generic ECS contains first-order ridges
extending into the rounded part of the ECS, where two rough orientations
coexist and first-order faceted to rough boundaries terminating in
Pokrovsky-Talapov type end points.Comment: Contains 4 pages, 5 eps figures. Uses RevTe
The phase diagram of the lattice Calogero-Sutherland model
We introduce a {\it lattice} version of the Calogero Sutherland model adapted
to describe pairwise interacting steps with discrete positions on a
vicinal surface. The configurational free energy is obtained within a transfer
matrix method. The full phase diagram for attractive and for repulsive
interaction is deduced. For attraction, critical temperatures of faceting
transitions are found to depend on step density.Comment: latex PRBCalogSuth.tex, 6 files, 4 pages [SPEC-S00/900
Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type
A mean field theory is developed for the calculation of the surface free
energy of the staggered BCSOS, (or six vertex) model as function of the surface
orientation and of temperature. The model approximately describes surfaces of
crystals with nearest neighbor attractions and next nearest neighbor
repulsions. The mean field free energy is calculated by expressing the model in
terms of interacting directed walks on a lattice. The resulting equilibrium
shape is very rich with facet boundaries and boundaries between reconstructed
and unreconstructed regions which can be either sharp (first order) or smooth
(continuous). In addition there are tricritical points where a smooth boundary
changes into a sharp one and triple points where three sharp boundaries meet.
Finally our numerical results strongly suggest the existence of conical points,
at which tangent planes of a finite range of orientations all intersect each
other. The thermal evolution of the equilibrium shape in this model shows
strong similarity to that seen experimentally for ionic crystals.Comment: 14 Pages, Revtex and 10 PostScript figures include
Equilibrium crystal shapes in the Potts model
The three-dimensional -state Potts model, forced into coexistence by
fixing the density of one state, is studied for , 3, 4, and 6. As a
function of temperature and number of states, we studied the resulting
equilibrium droplet shapes. A theoretical discussion is given of the interface
properties at large values of . We found a roughening transition for each of
the numbers of states we studied, at temperatures that decrease with increasing
, but increase when measured as a fraction of the melting temperature. We
also found equilibrium shapes closely approaching a sphere near the melting
point, even though the three-dimensional Potts model with three or more states
does not have a phase transition with a diverging length scale at the melting
point.Comment: 6 pages, 3 figures, submitted to PR
3D printed hybrid scaffolds for bone regeneration using calcium methoxyethoxide as a calcium source
Introduction: Hybrids consist of inorganic and organic co-networks that are indistinguishable above the nanoscale, which can lead to unprecedented combinations of properties, such as high toughness and controlled degradation. Methods: We present 3D printed bioactive hybrid scaffolds for bone regeneration, produced by incorporating calcium into our "Bouncy Bioglass", using calcium methoxyethoxide (CME) as the calcium precursor. SiO2-CaOCME/PTHF/PCL-diCOOH hybrid "inks" for additive manufacturing (Direct Ink Writing) were optimised for synergy of mechanical properties and open interconnected pore channels. Results and Discussion: Adding calcium improved printability. Changing calcium content (5, 10, 20, 30, and 40 mol.%) of the SiO2-CaOCME/PTHF/PCL-diCOOH hybrids affected printability and mechanical properties of the lattice-like scaffolds. Hybrids containing 30 mol.% calcium in the inorganic network (70S30CCME-CL) printed with 500 µm channels and 100 µm strut size achieved the highest strength (0.90 ± 0.23 MPa) and modulus of toughness (0.22 ± 0.04 MPa). These values were higher than Ca-free SiO2/PTHF/PCL-diCOOH hybrids (0.36 ± 0.14 MPa strength and 0.06 ± 0.01 MPa toughness modulus). Over a period of 90 days of immersion in simulated body fluid (SBF), the 70S30CCME-CL hybrids also kept a stable strain to failure (~30 %) and formed hydroxycarbonate apatite within three days. The extracts released by the 70S30CCME-CL hybrids in growth medium did not cause cytotoxic effects on human bone marrow stromal cells over 24 h of culture
Are Vicinal Metal Surfaces Stable?
Quantum Matter and Optic
Phase Separation of Crystal Surfaces: A Lattice Gas Approach
We consider both equilibrium and kinetic aspects of the phase separation
(``thermal faceting") of thermodynamically unstable crystal surfaces into a
hill--valley structure. The model we study is an Ising lattice gas for a simple
cubic crystal with nearest--neighbor attractive interactions and weak
next--nearest--neighbor repulsive interactions. It is likely applicable to
alkali halides with the sodium chloride structure. Emphasis is placed on the
fact that the equilibrium crystal shape can be interpreted as a phase diagram
and that the details of its structure tell us into which surface orientations
an unstable surface will decompose. We find that, depending on the temperature
and growth conditions, a number of interesting behaviors are expected. For a
crystal in equilibrium with its vapor, these include a low temperature regime
with logarithmically--slow separation into three symmetrically--equivalent
facets, and a higher temperature regime where separation proceeds as a power
law in time into an entire one--parameter family of surface orientations. For a
crystal slightly out of equilibrium with its vapor (slow crystal growth or
etching), power--law growth should be the rule at late enough times. However,
in the low temperature regime, the rate of separation rapidly decreases as the
chemical potential difference between crystal and vapor phases goes to zero.Comment: 16 pages (RevTex 3.0); 12 postscript figures available on request
([email protected]). Submitted to Physical Review E. SFU-JDSDJB-94-0
3D printed hybrid scaffolds for bone regeneration using calcium methoxyethoxide as a calcium source
Introduction: Hybrids consist of inorganic and organic co-networks that are indistinguishable above the nanoscale, which can lead to unprecedented combinations of properties, such as high toughness and controlled degradation.Methods: We present 3D printed bioactive hybrid scaffolds for bone regeneration, produced by incorporating calcium into our “Bouncy Bioglass”, using calcium methoxyethoxide (CME) as the calcium precursor. SiO2-CaOCME/PTHF/PCL-diCOOH hybrid “inks” for additive manufacturing (Direct Ink Writing) were optimised for synergy of mechanical properties and open interconnected pore channels.Results and Discussion: Adding calcium improved printability. Changing calcium content (5, 10, 20, 30, and 40 mol.%) of the SiO2-CaOCME/PTHF/PCL-diCOOH hybrids affected printability and mechanical properties of the lattice-like scaffolds. Hybrids containing 30 mol.% calcium in the inorganic network (70S30CCME-CL) printed with 500 µm channels and 100 µm strut size achieved the highest strength (0.90 ± 0.23 MPa) and modulus of toughness (0.22 ± 0.04 MPa). These values were higher than Ca-free SiO2/PTHF/PCL-diCOOH hybrids (0.36 ± 0.14 MPa strength and 0.06 ± 0.01 MPa toughness modulus). Over a period of 90 days of immersion in simulated body fluid (SBF), the 70S30CCME-CL hybrids also kept a stable strain to failure (~30 %) and formed hydroxycarbonate apatite within three days. The extracts released by the 70S30CCME-CL hybrids in growth medium did not cause cytotoxic effects on human bone marrow stromal cells over 24 h of culture
Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier
The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells
- …