198 research outputs found

    Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models.</p> <p>Methods</p> <p>In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth <it>in vitro </it>and in a SCID-rab myeloma model.</p> <p>Results</p> <p>PF4 and p17-70 significantly attenuated VEGF production, both <it>in vitro </it>and <it>in vivo</it>. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts.</p> <p>Conclusions</p> <p>Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis.</p

    Novel mutations in the VKORC1 gene of wild rats and mice – a response to 50 years of selection pressure by warfarin?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coumarin derivatives have been in world-wide use for rodent pest control for more than 50 years. Due to their retarded action as inhibitors of blood coagulation by repression of the vitamin K reductase (VKOR) activity, they are the rodenticides of choice against several species. Resistance to these compounds has been reported for rodent populations from many countries around the world and poses a considerable problem for efficacy of pest control.</p> <p>Results</p> <p>In the present study, we have sequenced the <it>VKORC1 </it>genes of more than 250 rats and mice trapped in anticoagulant-exposed areas from four continents, and identified 18 novel and five published missense mutations, as well as eight neutral sequence variants, in a total of 178 animals. Mutagenesis in <it>VKORC1 </it>cDNA constructs and their recombinant expression revealed that these mutations reduced VKOR activities as compared to the wild-type protein. However, the <it>in vitro </it>enzyme assay used was not suited to convincingly demonstrate the warfarin resistance of all mutant proteins</p> <p>Conclusion</p> <p>Our results corroborate the <it>VKORC1 </it>gene as the main target for spontaneous mutations conferring warfarin resistance. The mechanism(s) of how mutations in the <it>VKORC1 </it>gene mediate insensitivity to coumarins <it>in vivo </it>has still to be elucidated.</p

    Amino acid sequence of honeybee prepromelittin synthesized in vitro.

    No full text
    • …
    corecore