99 research outputs found

    Spectroscopic signatures of crystal momentum fractionalization

    Get PDF
    We consider gapped Z2 spin liquids, where spinon quasiparticles may carry fractional quantum numbers of space group symmetry. In particular, spinons can carry fractional crystal momentum. We show that such quantum number fractionalization has dramatic, spectroscopically accessible consequences, namely enhanced periodicity of the two-spinon density of states in the Brillouin zone, which can be detected via inelastic neutron scattering. This effect is a sharp signature of certain topologically ordered spin liquids and other symmetry enriched topological phases. Considering square lattice space group and time reversal symmetry, we show that exactly four distinct types of spectral periodicity are possible.Comment: 6 pages; v2: added reference; v3: improved introduction, typos corrected; v4: added referenc

    Topological Entanglement Entropy of Fracton Stabilizer Codes

    Full text link
    Entanglement entropy provides a powerful characterization of two-dimensional gapped topological phases of quantum matter, intimately tied to their description by topological quantum field theories (TQFTs). Fracton topological orders are three-dimensional gapped topologically ordered states of matter, but the existence of a TQFT description for these phases remains an open question. We show that three-dimensional fracton phases are nevertheless characterized, at least partially, by universal structure in the entanglement entropy of their ground state wave functions. We explicitly compute the entanglement entropy for two archetypal fracton models --- the `X-cube model' and `Haah's code' --- and demonstrate the existence of a topological contribution that scales linearly in subsystem size. We show via Schrieffer-Wolff transformations that the topological entanglement of fracton models is robust against arbitrary local perturbations of the Hamiltonian. Finally, we argue that these results may be extended to characterize localization-protected fracton topological order in excited states of disordered fracton models.Comment: published versio

    Mott insulating phases and quantum phase transitions of interacting spin-3/2 fermionic cold atoms in optical lattices at half filling

    Full text link
    We study various Mott insulating phases of interacting spin-3/2 fermionic ultracold atoms in two-dimensional square optical lattices at half filling. Using a generalized one-band Hubbard model with hidden SO(5) symmetry, we identify two distinct symmetry breaking phases: the degenerate antiferromagnetic spin-dipole/spin-octupole ordering and spin-quadrupole ordering, depending on the sign of the spin-dependent interaction. These two competing orders exhibit very different symmetry properties, low energy excitations and topological characterizations. Near the SU(4) symmetric point, a quantum critical state with a π\pi -flux phase may emerge due to strong quantum fluctuations, leading to spin algebraic correlations and gapless excitations.Comment: 11 pages, 4 figure

    Bond algebraic liquid phase in strongly correlated multiflavor cold atom systems

    Full text link
    When cold atoms are trapped in a square or cubic optical lattice, it should be possible to pump the atoms into excited p−p-level orbitals within each well. Following earlier work, we explore the metastable equilibrium that can be established before the atoms decay into the s−s-wave orbital ground state. We will discuss the situation with integer number of bosons on every site, and consider the strong correlation "insulating" regime. By employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". The gapless nature of this phase is stabilized due to the emergence of symmetries which lead to a quasi-one dimensional behavior. Within the algebraic liquid phase, both bond operators and particle flavor occupation number operators have correlations which decay algebraically in space and time. Upon varying parameters, the algebraic bond liquid can be unstable to either a Mott insulator phase which spontaneously breaks lattice symmetries, or a Z2\mathbb{Z}_2 phase. The possibility of detecting the algebraic liquid phase in cold atom experiments is addressed. Although the momentum distribution function is insufficient to distinguish the algebraic bond liquid from other phases, the density correlation function can in principle be used to detect this new phase of matter.Comment: 15 pages, 10 figure

    Gapless Bosonic Excitation without symmetry breaking: Novel Algebraic Spin liquid with soft Gravitons

    Full text link
    A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the graviton, although they have a soft ω∼k2\omega\sim k^2 dispersion relation. There are three branches of gapless excitations in this phase, one of which is gapless scalar trace mode, the other two have the same polarization and gauge symmetries as the gravitons. The dynamics of this novel phase is described by a new set of Maxwell's equations. The defects carrying gauge charges can drive the system into the superfluid order when the defects are condensed; also the topological defects are coupled to the dual gauge field in the same manner as the charge defects couple to the original gauge field, after the condensation of the topological defects, the system is driven into the Mott Insulator phase. In the 2 dimensional case, the gapless soft graviton as well as the algebraic liquid phase are destroyed by the vertex operators in the dual theory, and the stripe order is most likely to take place close to the 2 dimensional quantum critical point at which the vertex operators are tuned to zero.Comment: 11 pages, 9 figure

    Universal point contact resistance between thin-film superconductors

    Get PDF
    A system comprising two superconducting thin films connected by a point contact is considered. The contact resistance is calculated as a function of temperature and film geometry, and is found to vanish rapidly with temperature, according to a universal, nearly activated form, becoming strictly zero only at zero temperature. At the lowest temperatures, the activation barrier is set primarily by the superfluid stiffness in the films, and displays only a weak (i.e., logarithmic) temperature dependence. The Josephson effect is thus destroyed, albeit only weakly, as a consequence of the power-law-correlated superconducting fluctuations present in the films below the Berezinskii-Kosterlitz-Thouless transition temperature. The behavior of the resistance is discussed, both in various limiting regimes and as it crosses over between these regimes. Details are presented of a minimal model of the films and the contact, and of the calculation of the resistance. A formulation in terms of quantum phase-slip events is employed, which is natural and effective in the limit of a good contact. However, it is also shown to be effective even when the contact is poor and is, indeed, indispensable, as the system always behaves as if it were in the good-contact limit at low enough temperature. A simple mechanical analogy is introduced to provide some heuristic understanding of the nearly-activated temperature dependence of the resistance. Prospects for experimental tests of the predicted behavior are discussed, and numerical estimates relevant to anticipated experimental settings are provided.Comment: 29 pages (single column format), 7 figure

    The Spin Liquid State of the Tb2Ti2O7 Pyrochlore Antiferromagnet: A Puzzling State of Affairs

    Full text link
    The pyrochlore antiferromagnet Tb2Ti2O7 has proven to be an enigma to experimentalists and theorists working on frustrated magnetic systems. The experimentally determined energy level structure suggests a local Ising antiferromagnet at low temperatures, T < 10 K. An appropriate model then predicts a long-range ordered Q = 0 state below approximately 2 K. However, muon spin resonance experiments reveal a paramagnetic structure down to tens of milli-Kelvin. The importance of fluctuations out of the ground state effective Ising doublet has been recently understood, for the measured paramagnetic correlations can not be described without including the higher crystal field states. However, these fluctuations treated within the random phase approximation (RPA) fail to account for the lack of ordering in this system below 2 K. In this work, we briefly review the experimental evidence for the collective paramagnetic state of Tb2Ti2O7. The basic theoretical picture for this system is discussed, where results from classical spin models are used to motivate the investigation of quantum effects to lowest order via the RPA. Avenues for future experimental and theoretical work on Tb2Ti2O7 are presented.Comment: Latex2e,6 pages, IOP format, introduction shortened and other minor corrections, replaced with published version in the Proceedings of the Highly Frustrated Magnetism 2003 Conference, Grenobl

    Algebraic charge liquids

    Get PDF
    High temperature superconductivity emerges in the cuprate compounds upon changing the electron density of an insulator in which the electron spins are antiferromagnetically ordered. A key characteristic of the superconductor is that electrons can be extracted from them at zero energy only if their momenta take one of four specific values (the `nodal points'). A central enigma has been the evolution of the zero energy electrons in the metallic state between the antiferromagnet and the superconductor, and recent experiments yield apparently contradictory results. The oscillation of the resistance in this metal as a function of magnetic field indicate that the zero energy electrons carry momenta which lie on elliptical `Fermi pockets', while ejection of electrons by high intensity light indicates that the zero energy electrons have momenta only along arc-like regions. We present a theory of new states of matter, which we call `algebraic charge liquids', which arise naturally between the antiferromagnet and the superconductor, and reconcile these observations. Our theory also explains a puzzling dependence of the density of superconducting electrons on the total electron density, and makes a number of unique predictions for future experiments.Comment: 6+8 pages, 2 figures; (v2) Rewritten for broader accessibility; (v3) corrected numerical error in Eq. (5
    • …
    corecore