1,253 research outputs found
Thermal conductivity of the one-dimensional Fermi-Hubbard model
We study the thermal conductivity of the one-dimensional Fermi-Hubbard model
at finite temperature using a density matrix renormalization group approach.
The integrability of this model gives rise to ballistic thermal transport. We
calculate the temperature dependence of the thermal Drude weight at half
filling for various interactions and moreover, we compute its filling
dependence at infinite temperature. The finite-frequency contributions
originating from the fact that the energy current is not a conserved quantity
are investigated as well. We report evidence that breaking the integrability
through a nearest-neighbor interaction leads to vanishing Drude weights and
diffusive energy transport. Moreover, we demonstrate that energy spreads
ballistically in local quenches with initially inhomogeneous energy density
profiles in the integrable case. We discuss the relevance of our results for
thermalization in ultra-cold quantum gas experiments and for transport
measurements with quasi-one dimensional materials
Strongly interacting bosons on a three-leg ladder in the presence of a homogeneous flux
We perform a density-matrix renormalization-group study of strongly
interacting bosons on a three-leg ladder in the presence of a homogeneous flux.
Focusing on one-third filling, we explore the phase diagram in dependence of
the magnetic flux and the inter-leg tunneling strength. We find several phases
including a Meissner phase, vortex liquids, a vortex lattice, as well as a
staggered-current phase. Moreover, there are regions where the chiral current
reverses its direction, both in the Meissner and in the staggered-current
phase. While the reversal in the latter case can be ascribed to spontaneous
breaking of translational invariance, in the first it stems from an effective
flux increase in the rung direction. Interactions are a necessary ingredient to
realize either type of chiral-current reversal
Comparative study of theoretical methods for nonequilibrium quantum transport
We present a detailed comparison of three different methods designed to
tackle nonequilibrium quantum transport, namely the functional renormalization
group (fRG), the time-dependent density matrix renormalization group (tDMRG),
and the iterative summation of real-time path integrals (ISPI). For the
nonequilibrium single-impurity Anderson model (including a Zeeman term at the
impurity site), we demonstrate that the three methods are in quantitative
agreement over a wide range of parameters at the particle-hole symmetric point
as well as in the mixed-valence regime. We further compare these techniques
with two quantum Monte Carlo approaches and the time-dependent numerical
renormalization group method.Comment: 19 pages, 7 figures; published versio
Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster
BACKGROUND: Pancreatic cholesterol esterase has three proposed functions in the intestine: 1) to control the bioavailability of cholesterol from dietary cholesterol esters; 2) to contribute to incorporation of cholesterol into mixed micelles; and 3) to aid in transport of free cholesterol to the enterocyte. Inhibitors of cholesterol esterase are anticipated to limit the absorption of dietary cholesterol. RESULTS: The selective and potent cholesterol esterase inhibitor 6-chloro-3-(1-ethyl-2-cyclohexyl)-2-pyrone (figure 1, structure 1) was administered to hamsters fed a high cholesterol diet supplemented with radiolabeled cholesterol ester. Hamsters were gavage fed (3)H-labeled cholesteryl oleate along with inhibitor 1, 0–200 micromoles. Twenty-four hours later, hepatic and serum radioactive cholesterol levels were determined. The ED(50 )of inhibitor 1 for prevention of the uptake of labeled cholesterol derived from hydrolysis of labeled cholesteryl oleate was 100 micromoles. The toxicity of inhibitor 1 was investigated in a 30 day feeding trial. Inhibitor 1, 100 micromoles or 200 micromoles per day, was added to chow supplemented with 1% cholesterol and 0.5% cholic acid. Clinical chemistry urinalysis and tissue histopathology were obtained. No toxicity differences were noted between control and inhibitor supplemented groups. CONCLUSIONS: Inhibitors of cholesterol esterase may be useful therapeutics for limiting cholesterol absorption
Thermal transport of the XXZ chain in a magnetic field
We study the heat conduction of the spin-1/2 XXZ chain in finite magnetic
fields where magnetothermal effects arise. Due to the integrability of this
model, all transport coefficients diverge, signaled by finite Drude weights.
Using exact diagonalization and mean-field theory, we analyze the temperature
and field dependence of the thermal Drude weight for various exchange
anisotropies under the condition of zero magnetization-current flow. First, we
find a strong magnetic field dependence of the Drude weight, including a
suppression of its magnitude with increasing field strength and a non-monotonic
field-dependence of the peak position. Second, for small exchange anisotropies
and magnetic fields in the massless as well as in the fully polarized regime
the mean-field approach is in excellent agreement with the exact
diagonalization data. Third, at the field-induced quantum critical line between
the para- and ferromagnetic region we propose a universal low-temperature
behavior of the thermal Drude weight.Comment: 9 pages REVTeX4 including 5 figures, revised version, refs. added,
typos correcte
Pairing states of a polarized Fermi gas trapped in a one-dimensional optical lattice
We study the properties of a one-dimensional (1D) gas of fermions trapped in
a lattice by means of the density matrix renormalization group method, focusing
on the case of unequal spin populations, and strong attractive interaction. In
the low density regime, the system phase-separates into a well defined
superconducting core and a fully polarized metallic cloud surrounding it. We
argue that the superconducting phase corresponds to a 1D analogue of the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasi-condensate of
tightly bound bosonic pairs with a finite center-of-mass momentum that scales
linearly with the magnetization. In the large density limit, the system allows
for four phases: in the core, we either find a Fock state of localized pairs or
a metallic shell with free spin-down fermions moving in a fully filled
background of spin-up fermions. As the magnetization increases, the Fock state
disappears to give room for a metallic phase, with a partially polarized
superconducting FFLO shell and a fully polarized metallic cloud surrounding the
core.Comment: 4 pages, 5 fig
Vortex and Meissner phases of strongly-interacting bosons on a two-leg ladder
We establish the phase diagram of the strongly-interacting Bose-Hubbard model
defined on a two-leg ladder geometry in the presence of a homogeneous flux. Our
work is motivated by a recent experiment [Atala et al., Nature Phys. 10, 588
(2014)], which studied the same system, in the complementary regime of weak
interactions. Based on extensive density matrix renormalization group
simulations and a bosonization analysis, we fully explore the parameter space
spanned by filling, inter-leg tunneling, and flux. As a main result, we
demonstrate the existence of gapless and gapped Meissner and vortex phases,
with the gapped states emerging in Mott-insulating regimes. We calculate
experimentally accessible observables such as chiral currents and vortex
patterns.Comment: 4 pages + Supplementary Materia
Spontaneous increase of magnetic flux and chiral-current reversal in bosonic ladders: Swimming against the tide
The interplay between spontaneous symmetry breaking in many-body systems, the
wavelike nature of quantum particles and lattice effects produces an
extraordinary behavior of the chiral current of bosonic particles in the
presence of a uniform magnetic flux defined on a two-leg ladder. While
non-interacting as well as strongly interacting particles, stirred by the
magnetic field, circulate along the system's boundary in the counterclockwise
direction in the ground state, interactions stabilize vortex lattices. These
states break translational symmetry, which can lead to a reversal of the
circulation direction. Our predictions could readily be accessed in quantum gas
experiments with existing setups or in arrays of Josephson junctions.Comment: 5 pages + 5 pages of supplementary materia
Bound states in weakly disordered spin ladders
We study the appearance of bound states in the spin gap of spin-1/2 ladders
induced by weak bond disorder. Starting from the strong-coupling limit, i.e.,
the limit of weakly coupled dimers, we perform a projection on the
single-triplet subspace and derive the position of bound states for the single
impurity problem of one modified coupling as well as for small impurity
clusters. The case of a finite concentration of impurities is treated with the
coherent-potential approximation in the strong-coupling limit and compared with
numerical results. Furthermore, we analyze the details in the structure of the
density of states and relate their origin to the influence of impurity
clusters.Comment: 2 pages, 1 figure. Proceedings of SCES'04, to appear in Physica
- …