187 research outputs found

    Plasma chemistry of fluorocarbon RF discharges used for dry etching

    Get PDF
    ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr. J.H. van Lint, voor een commissie aangewezen door het College van Dekanen in het openbaar te verdedigen op dinsdag 10 september 1991 te 16.00 uur doo

    Een wereld verlicht door gasontladingen

    Get PDF

    The chemistry of a CCl2F2 radio frequency discharge

    Get PDF
    A systematic study of the chemistry of stable molecules and radicals in a low pressure CCl2F2 radio frequency discharge for dry Si etching has been performed. Various particle densities have been measured and modeled. The electron density, needed as an input parameter to model the CCl2F2 dissociation, is measured by a microwave cavity method. The densities of stable molecules, like CClF3, CF4, 1,2-C2Cl2F4 and the etch product SiF4, are measured by Fourier transform absorption spectroscopy. The density of the CF2 radical is measured by means of absorption spectroscopy with a tunable diode laser. Its density is in the order of 1019 m-3. All density measurements are presented as a function of various plasma parameters. Moreover, optical emission intensities of Cl and F have been recorded as a function of plasma parameters. It appears that the feed gas (CCl2F2) is substantially dissociated (about 70%–90%) in the discharge. Based on the obtained data the dissociation rates of several molecules have been estimated. The measured total dissociation rate of CCl2F2 is 8×10-15 m3¿s-1. For this molecule the dissociation rate is substantially higher than the dissociative attachment rate (10-15 m3¿s-1). The dissociation rate for CClF3 is 2×10-15 m3¿s-1 and for CF4 about 3×10-16 m3¿s-1. The total dissociation rate of C2Cl2F4 is higher than 5 ×10-15 m3¿s-1, of which 2.5±0.5 × 10-15 m3¿s-1 is due to dissociative attachment. Furthermore it has been found that the presence of a silicon wafer strongly affects the plasma chemistry. Optical emission measurements show that the densities of halogen radicals are significantly depleted in presence of Si. Moreover, the densities of several halocarbon molecules display a negative correlation with the density of the etch product SiF4. © 1995 American Vacuum Societ

    In situ ellipsometry during plasma etching of silica films on Si

    Get PDF
    The etching of SiO2 films on a Si substrate in an rf plasma in CF4 has been studied with i n s i t uellipsometry. The etch rate was measured as a function of flow, rf power and pressure. An accurate analysis of the experimental data using numerical simulations based on multilayermodels has yielded information both on the refractive index of the etched SiO2 film and on the existence of a top layer. It could be established that a layer is present on top of the SiO2 during etching, which is probably caused by roughening of the SiO2 layer. Furthermore at high pressures (>8 Pa) it was demonstrated that after the complete removal of the SiO2 film a polymer layer starts growing on the Si substrate

    Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    Get PDF
    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg^+/Dy^+, the electron density, the ground state, and the totaldensity of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate
    corecore