2,041 research outputs found
Finite bounded expanding white hole universe without dark matter
The solution of Einstein's field equations in Cosmological General Relativity
(CGR), where the Galaxy is at the center of a finite yet bounded spherically
symmetrical isotropic gravitational field, is identical with the unbounded
solution. This leads to the conclusion that the Universe may be viewed as a
finite expanding white hole. The fact that CGR has been successful in
describing the distance modulus verses redshift data of the high-redshift type
Ia supernovae means that the data cannot distinguish between unbounded models
and those with finite bounded radii of at least . Also it is shown that
the Universe is spatially flat at the current epoch and has been at all past
epochs where it was matter dominated.Comment: 11 pages, revised versio
Spheroidal and elliptical galaxy radial velocity dispersion determined from Cosmological General Relativity
Radial velocity dispersion in spheroidal and elliptical galaxies, as a
function of radial distance from the center of the galaxy, has been derived
from Cosmological Special Relativity. For velocity dispersions in the outer
regions of spherical galaxies, the dynamical mass calculated for a galaxy using
Carmelian theory may be 10 to 100 times less than that calculated from standard
Newtonian physics. This means there is no need to include halo dark matter. The
velocity dispersion is found to be approximately constant across the galaxy
after falling from an initial high value at the center.Comment: 10 pages, 3 figure
The vector algebra war: a historical perspective
There are a wide variety of different vector formalisms currently utilized in
engineering and physics. For example, Gibbs' three-vectors, Minkowski
four-vectors, complex spinors in quantum mechanics, quaternions used to
describe rigid body rotations and vectors defined in Clifford geometric
algebra. With such a range of vector formalisms in use, it thus appears that
there is as yet no general agreement on a vector formalism suitable for science
as a whole. This is surprising, in that, one of the primary goals of nineteenth
century science was to suitably describe vectors in three-dimensional space.
This situation has also had the unfortunate consequence of fragmenting
knowledge across many disciplines, and requiring a significant amount of time
and effort in learning the various formalisms. We thus historically review the
development of our various vector systems and conclude that Clifford's
multivectors best fulfills the goal of describing vectorial quantities in three
dimensions and providing a unified vector system for science.Comment: 8 pages, 1 figure, 1 tabl
Modified permittivity observed in bulk Gallium Arsenide and Gallium Phosphide samples at 50 K using the Whispering Gallery mode method
Whispering Gallery modes in bulk cylindrical Gallium Arsenide and Gallium
Phosphide samples have been examined both in darkness and under white light at
50 K. In both samples we observed change in permittivity under light and dark
conditions. This results from a change in the polarization state of the
semiconductor, which is consistent with a free electron-hole
creation/recombination process. The permittivity of the semiconductor is
modified by free photocarriers in the surface layers of the sample which is the
region sampled by Whispering Gallery modes.Comment: 8 pages, 3 figure
Particle Pair Production in Cosmological General Relativity
The Cosmological General Relativity (CGR) of Carmeli, a 5-dimensional (5-D)
theory of time, space and velocity, predicts the existence of an acceleration
a_0 = c / tau due to the expansion of the universe, where c is the speed of
light in vacuum, tau = 1 / h is the Hubble-Carmeli time constant, where h is
the Hubble constant at zero distance and no gravity.
The Carmeli force on a particle of mass m is F_c = m a_0, a fifth force in
nature.
In CGR, the effective mass density rho_eff = rho - rho_c, where rho is the
matter density and rho_c is the critical mass density which we identify with
the vacuum mass density rho_vac = -rho_c.
The fields resulting from the weak field solution of the Einstein field
equations in 5-D CGR and the Carmeli force are used to hypothesize the
production of a pair of particles.
The mass of each particle is found to be m = tau c^3 / 4 G, where G is
Newton's constant.
The vacuum mass density derived from the physics is rho_vac = -rho_c = -3 /
(8 pi G tau^2).
The cosmic microwave background (CMB) black body radiation at the temperature
T_o = 2.72548 K which fills that volume is found to have a relationship to the
ionization energy of the Hydrogen atom. Define the radiation energy
epsilon_gamma = (1 - g) m c^2 / N_gamma, where (1-g) is the fraction of the
initial energy m c^2 which converts to photons, g is a function of the baryon
density parameter Omega_b and N_gamma is the total number of photons in the CMB
radiation field. We make the connection with the ionization energy of the first
quantum level of the Hydrogen atom by the hypothesis epsilon_gamma = [(1 - g) m
c^2] / N_gamma = alpha^2 mu c^2 / 2, where alpha is the fine-structure constant
and mu = m_p f / (1 + f), where f= m_e / m_p with m_e the electron mass and m_p
the proton mass.Comment: 14 pages, 0 figures. The final publication is available at
springerlink.co
Carmeli's accelerating universe is spatially flat without dark matter
Carmeli's 5D brane cosmology has been applied to the expanding accelerating
universe and it has been found that the distance redshift relation will fit the
data of the high-z supernova teams without the need for dark matter. Also the
vacuum energy contribution to gravity indicates that the universe is
asymptotically expanding towards a spatially flat state, where the total
mass/energy density tends to unity.Comment: 4 pages, 5 figures, accepted for publication in Int. J. Theor.
Physics, this paper is based on an invited talk at FFP6, Udine, Italy, Sept
200
Determination of stability constants using genetic algorithms
A genetic algorithm (GA)-simplex hybrid approach has been developed for the determination of stability constants using calorimetric and polarographic data obtained from literature sources. The GA determined both the most suitable equilibrium model for the systems studied and the values of the stability constants and the heats of formation for the calorimetric studies. As such, a variable length chromosome format was devised to represent the equilibrium models and stability constants (and heats of formation). The polarographic data were obtained from studies of cadmium chloride and lead with the crown ether dicyclohexyl-18-crown-6. The calorimetric data were obtained from a study of a two step addition reaction of Hg(CN)2 with thiourea. The stability constants obtained using the GA-simplex hybrid approach compare favourably with the values quoted in the literature
- …
