8 research outputs found

    Flying Adversarial Patches: Manipulating the Behavior of Deep Learning-based Autonomous Multirotors

    Full text link
    Autonomous flying robots, e.g. multirotors, often rely on a neural network that makes predictions based on a camera image. These deep learning (DL) models can compute surprising results if applied to input images outside the training domain. Adversarial attacks exploit this fault, for example, by computing small images, so-called adversarial patches, that can be placed in the environment to manipulate the neural network's prediction. We introduce flying adversarial patches, where an image is mounted on another flying robot and therefore can be placed anywhere in the field of view of a victim multirotor. For an effective attack, we compare three methods that simultaneously optimize the adversarial patch and its position in the input image. We perform an empirical validation on a publicly available DL model and dataset for autonomous multirotors. Ultimately, our attacking multirotor would be able to gain full control over the motions of the victim multirotor.Comment: 6 pages, 5 figures, Workshop on Multi-Robot Learning, International Conference on Robotics and Automation (ICRA

    Kidnapping Deep Learning-based Multirotors using Optimized Flying Adversarial Patches

    Full text link
    Autonomous flying robots, such as multirotors, often rely on deep learning models that make predictions based on a camera image, e.g. for pose estimation. These models can predict surprising results if applied to input images outside the training domain. This fault can be exploited by adversarial attacks, for example, by computing small images, so-called adversarial patches, that can be placed in the environment to manipulate the neural network's prediction. We introduce flying adversarial patches, where multiple images are mounted on at least one other flying robot and therefore can be placed anywhere in the field of view of a victim multirotor. By introducing the attacker robots, the system is extended to an adversarial multi-robot system. For an effective attack, we compare three methods that simultaneously optimize multiple adversarial patches and their position in the input image. We show that our methods scale well with the number of adversarial patches. Moreover, we demonstrate physical flights with two robots, where we employ a novel attack policy that uses the computed adversarial patches to kidnap a robot that was supposed to follow a human.Comment: Accepted at MRS 2023, 7 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:2305.1285

    ADVANCES IN THE CHEMISTRY OF 3-CYANOPYRIDIN-2(1 H

    No full text
    corecore