15 research outputs found

    Highly efficient novel recombinant L-asparaginase with no glutaminase activity from a new halo-thermotolerant Bacillus strain

    Get PDF
    Introduction: The bacterial enzyme has gained more attention in therapeutic application because of the higher substrate specificity and longer half-life. L-asparaginase is an important enzyme with known antineoplastic effect against acute lymphoblastic leukemia (ALL). Methods: Novel L-asparaginase genes were identified from a locally isolated halo-thermotolerant Bacillus strain and the recombinant enzymes were overexpressed in modified E. coli strains, OrigamiTM B and BL21. In addition, the biochemical properties of the purified enzymes were characterized, and the enzyme activity was evaluated at different temperatures, pH, and substrate concentrations. Results: The concentration of pure soluble enzyme obtained from Origami strain was ~30 mg/L of bacterial culture, which indicates the significant improvement compared to L-asparaginase produced by E. coli BL21 strain. The catalytic activity assay on the identified L-asparaginases (ansA1 and ansA3 genes) from Bacillus sp. SL-1 demonstrated that only ansA1 gene codes an active and stable homologue (ASPase A1) with high substrate affinity toward L-asparagine. The Kcat and Km values for the purified ASPase A1 enzyme were 23.96s-1 and 10.66 µM, respectively. In addition, the recombinant ASPase A1 enzyme from Bacillus sp. SL-1 possessed higher specificity to L-asparagine than L-glutamine. The ASPase A1 enzyme was highly thermostable and resistant to the wide range of pH 4.5�10. Conclusion: The biochemical properties of the novel ASPase A1 derived from Bacillus sp. SL-l indicated a great potential for the identified enzyme in pharmaceutical and industrial applications. © 2019 The Author(s)

    A strategy for soluble overexpression and biochemical characterization of halo-thermotolerant Bacillus laccase in modified E. coli

    No full text
    An efficient method was introduced for soluble expression of recombinant laccase (rpCotA(SL-1)) from a newly isolated halo-thermotolerant Bacillus sp. SL-1 in modified Escherichia coli, trxB2/gor2 mutant (Origami� B (DE3)). The yield of purified soluble laccase in Origami strain under micro-aerobic condition was ~20 mg/L of bacterial culture, showing significant improvement over the laccase produced in E.coli BL21 strain under aerobic condition. The specific activity of 13 U/mg for purified laccase produced in micro-aerobic condition was higher than that of 1.07 U/mg observed for the purified enzyme obtained in aerobic condition in Origami. The kinetic Km and kcat parameters for laccase-induced oxidation reactions were 46 μM and 23 s-1 for ABTS (2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulphonic acid), and 19.6 μM and 24 s-1 for SGZ (syringaldazine) substrates, respectively. The rpCotA(SL-1) displayed thermostability at 70 °C and tolerance to specified concentrations of NaCl, NaN3, EDTA and SDS as inhibitors. The enzyme was relatively stable in the presence of different concentration of organic solvents, however the residual activity was adversely affected as the dipole moment of the solvents increase. Here we successfully report the production of soluble and functional laccase in Origami at the expression level suitable for industrial application. © 2016 Elsevier B.V

    Shaping molecular diversity

    No full text
    corecore