423 research outputs found

    Elastic Scattering by Deterministic and Random Fractals: Self-Affinity of the Diffraction Spectrum

    Full text link
    The diffraction spectrum of coherent waves scattered from fractal supports is calculated exactly. The fractals considered are of the class generated iteratively by successive dilations and translations, and include generalizations of the Cantor set and Sierpinski carpet as special cases. Also randomized versions of these fractals are treated. The general result is that the diffraction intensities obey a strict recursion relation, and become self-affine in the limit of large iteration number, with a self-affinity exponent related directly to the fractal dimension of the scattering object. Applications include neutron scattering, x-rays, optical diffraction, magnetic resonance imaging, electron diffraction, and He scattering, which all display the same universal scaling.Comment: 20 pages, 11 figures. Phys. Rev. E, in press. More info available at http://www.fh.huji.ac.il/~dani

    Elimination of Schistosomiasis Transmission in Zanzibar: Baseline Findings before the Onset of a Randomized Intervention Trial.

    Get PDF
    Gaining and sustaining control of schistosomiasis and, whenever feasible, achieving local elimination are the year 2020 targets set by the World Health Organization. In Zanzibar, various institutions and stakeholders have joined forces to eliminate urogenital schistosomiasis within 5 years. We report baseline findings before the onset of a randomized intervention trial designed to assess the differential impact of community-based praziquantel administration, snail control, and behavior change interventions. In early 2012, a baseline parasitological survey was conducted in ∼20,000 people from 90 communities in Unguja and Pemba. Risk factors for schistosomiasis were assessed by administering a questionnaire to adults. In selected communities, local knowledge about schistosomiasis transmission and prevention was determined in focus group discussions and in-depths interviews. Intermediate host snails were collected and examined for shedding of cercariae. The baseline Schistosoma haematobium prevalence in school children and adults was 4.3% (range: 0-19.7%) and 2.7% (range: 0-26.5%) in Unguja, and 8.9% (range: 0-31.8%) and 5.5% (range: 0-23.4%) in Pemba, respectively. Heavy infections were detected in 15.1% and 35.6% of the positive school children in Unguja and Pemba, respectively. Males were at higher risk than females (odds ratio (OR): 1.45; 95% confidence interval (CI): 1.03-2.03). Decreasing adult age (OR: 1.04; CI: 1.02-1.06), being born in Pemba (OR: 1.48; CI: 1.02-2.13) or Tanzania (OR: 2.36; CI: 1.16-4.78), and use of freshwater (OR: 2.15; CI: 1.53-3.03) showed higher odds of infection. Community knowledge about schistosomiasis was low. Only few infected Bulinus snails were found. The relatively low S. haematobium prevalence in Zanzibar is a promising starting point for elimination. However, there is a need to improve community knowledge about disease transmission and prevention. Control measures tailored to the local context, placing particular attention to hot-spot areas, high-risk groups, and individuals, will be necessary if elimination is to be achieved

    Inhibition of Electrical Activity by Retroviral Infection with Kir2.1 Transgenes Disrupts Electrical Differentiation of Motoneurons

    Get PDF
    Network-driven spontaneous electrical activity in the chicken spinal cord regulates a variety of developmental processes including neuronal differentiation and formation of neuromuscular structures. In this study we have examined the effect of chronic inhibition of spinal cord activity on motoneuron survival and differentiation. Early spinal cord activity in chick embryos was blocked using an avian replication-competent retroviral vector RCASBP (B) carrying the inward rectifier potassium channel Kir2.1. Chicken embryos were infected with one of the following constructs: RCASBP(B), RCASBP(B)-Kir2.1, or RCASBP(B)-GFP. Infection of chicken embryos at E2 resulted in widespread expression of the viral protein marker p27 gag throughout the spinal cord. Electrophysiological recordings revealed the presence of functional Kir2.1 channels in RCASBP(B)-Kir2.1 but not in RCASBP(B)-infected embryos. Kir2.1 expression significantly reduced the generation of spontaneous motor movements in chicken embryos developing in ovo. Suppression of spontaneous electrical activity was not due to a reduction in the number of surviving motoneurons or the number of synapses in hindlimb muscle tissue. Disruption of the normal pattern of activity in chicken embryos resulted in a significant downregulation in the functional expression of large-conductance Ca2+-dependent K+ channels. Reduction of spinal cord activity also generates a significant acceleration in the inactivation rate of A-type K+ currents without any significant change in current density. Kir2.1 expression did not affect the expression of voltage-gated Na+ channels or cell capacitance. These experiments demonstrate that chronic inhibition of chicken spinal cord activity causes a significant change in the electrical properties of developing motoneurons

    Development and Evaluation of a Sensitive PCR-ELISA System for Detection of Schistosoma Infection in Feces

    Get PDF
    Schistosomiasis is a neglected disease caused by worms of the genus Schistosoma. The transmission cycle requires contamination of bodies of water by parasite eggs present in excreta, specific snails as intermediate hosts and human contact with water. Fortunately, relatively safe and easily administrable drugs are available and, as the outcome of repeated treatment, a reduction of severe clinical forms and a decrease in the number of infected persons has been reported in endemic areas. The routine method for diagnosis is the microscopic examination but it fails when there are few eggs in the feces, as usually occurs in treated but noncured persons or in areas with low levels of transmission. This study reports the development of the PCR-ELISA system for the detection of Schistosoma DNA in human feces as an alternative approach to diagnose light infections. The system permits the enzymatic amplification of a specific region of the DNA from minute amounts of parasite material. Using the proposed PCR-ELISA approach for the diagnosis of a population in an endemic area in Brazil, 30% were found to be infected, as compared with the 18% found by microscopic fecal examination. Although the technique requires a complex laboratory infrastructure and specific funding it may be used by control programs targeting the elimination of schistosomiasis

    A Balance of BMP and Notch Activity Regulates Neurogenesis and Olfactory Nerve Formation

    Get PDF
    Although the function of the adult olfactory system has been thoroughly studied, the molecular mechanisms regulating the initial formation of the olfactory nerve, the first cranial nerve, remain poorly defined. Here, we provide evidence that both modulated Notch and bone morphogenetic protein (BMP) signaling affect the generation of neurons in the olfactory epithelium and reduce the number of migratory neurons, so called epithelioid cells. We show that this reduction of epithelial and migratory neurons is followed by a subsequent failure or complete absence of olfactory nerve formation. These data provide new insights into the early generation of neurons in the olfactory epithelium and the initial formation of the olfactory nerve tract. Our results present a novel mechanism in which BMP signals negatively affect Notch activity in a dominant manner in the olfactory epithelium, thereby regulating neurogenesis and explain why a balance of BMP and Notch activity is critical for the generation of neurons and proper development of the olfactory nerve

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    The Bacterial Intimins and Invasins: A Large and Novel Family of Secreted Proteins

    Get PDF
    Gram-negative bacteria have developed a limited repertoire of solutions for secreting proteins from the cytoplasmic compartment to the exterior of the cell. Amongst the spectrum of secreted proteins are the intimins and invasins (the Int/Inv family; TC# 1.B.54) which are characterized by an N-terminal β-barrel domain and a C-terminal surface localized passenger domain. Despite the important role played by members of this family in diseases mediated by several species of the Enterobacteriaceae, there has been little appreciation for the distribution and diversity of these proteins amongst Gram-negative bacteria. Furthermore, there is little understanding of the molecular events governing secretion of these proteins to the extracellular milieu.In silico approaches were used to analyze the domain organization and diversity of members of this secretion family. Proteins belonging to this family are predominantly associated with organisms from the γ-proteobacteria. Whilst proteins from the Chlamydia, γ-, β- and ε-proteobacteria possess β-barrel domains and passenger domains of various sizes, Int/Inv proteins from the α-proteobacteria, cyanobacteria and chlorobi possess only the predicted β-barrel domains. Phylogenetic analyses revealed that with few exceptions these proteins cluster according to organismal type, indicating that divergence occurred contemporaneously with speciation, and that horizontal transfer was limited. Clustering patterns of the β-barrel domains correlate well with those of the full-length proteins although the passenger domains do so with much less consistency. The modular subdomain design of the passenger domains suggests that subdomain duplication and deletion have occurred with high frequency over evolutionary time. However, all repeated subdomains are found in tandem, suggesting that subdomain shuffling occurred rarely if at all. Topological predictions for the β-barrel domains are presented.Based on our in silico analyses we present a model for the biogenesis of these proteins. This study is the first of its kind to describe this unusual family of bacterial adhesins

    Diagnostic Accuracy and Applicability of a PCR System for the Detection of Schistosoma mansoni DNA in Human Urine Samples from an Endemic Area

    Get PDF
    Schistosomiasis caused by Schistosoma mansoni, one of the most neglected human parasitoses in Latin America and Africa, is routinely confirmed by microscopic visualization of eggs in stool. The main limitation of this diagnostic approach is its lack of sensitivity in detecting individual low worm burdens and consequently data on infection rates in low transmission settings are little reliable. According to the scientific literature, PCR assays are characterized by high sensitivity and specificity in detecting parasite DNA in biological samples. A simple and cost effective extraction method for DNA of Schistosoma mansoni from urine samples in combination with a conventional PCR assay was developed and applied in an endemic area. This urine based PCR system was tested for diagnostic accuracy among a population of a small village in an endemic area, comparing it to a reference test composed of three different parasitological techniques. The diagnostic parameters revealed a sensitivity of 100%, a specificity of 91.20%, positive and negative predictive values of 86.25% and 100%, respectively, and a test accuracy of 94.33%. Further statistical analysis showed a k index of 0.8806, indicating an excellent agreement between the reference test and the PCR system. Data obtained from the mouse model indicate the infection can be detected one week after cercariae penetration, opening a new perspective for early detection and patient management during this stage of the disease. The data indicate that this innovative PCR system provides a simple to handle and robust diagnostic tool for the detection of S. mansoni DNA from urine samples and a promising approach to overcome the diagnostic obstacles in low transmission settings. Furthermore the principals of this molecular technique, based on the examination of human urine samples may be useful for the diagnosis of other neglected tropical diseases that can be detected by trans-renal DNA

    The development of descending projections from the brainstem to the spinal cord in the fetal sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the fetal sheep is a favoured model for studying the ontogeny of physiological control systems, there are no descriptions of the timing of arrival of the projections of supraspinal origin that regulate somatic and visceral function. In the early development of birds and mammals, spontaneous motor activity is generated within spinal circuits, but as development proceeds, a distinct change occurs in spontaneous motor patterns that is dependent on the presence of intact, descending inputs to the spinal cord. In the fetal sheep, this change occurs at approximately 65 days gestation (G65), so we therefore hypothesised that spinally-projecting axons from the neurons responsible for transforming fetal behaviour must arrive at the spinal cord level shortly before G65. Accordingly we aimed to identify the brainstem neurons that send projections to the spinal cord in the mature sheep fetus at G140 (term = G147) with retrograde tracing, and thus to establish whether any projections from the brainstem were absent from the spinal cord at G55, an age prior to the marked change in fetal motor activity has occurred.</p> <p>Results</p> <p>At G140, CTB labelled cells were found within and around nuclei in the reticular formation of the medulla and pons, within the vestibular nucleus, raphe complex, red nucleus, and the nucleus of the solitary tract. This pattern of labelling is similar to that previously reported in other species. The distribution of CTB labelled neurons in the G55 fetus was similar to that of the G140 fetus.</p> <p>Conclusion</p> <p>The brainstem nuclei that contain neurons which project axons to the spinal cord in the fetal sheep are the same as in other mammalian species. All projections present in the mature fetus at G140 have already arrived at the spinal cord by approximately one third of the way through gestation. The demonstration that the neurons responsible for transforming fetal behaviour in early ontogeny have already reached the spinal cord by G55, an age well before the change in motor behaviour occurs, suggests that the projections do not become fully functional until well after their arrival at the spinal cord.</p

    Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells.

    Get PDF
    In vascular plants, the root endodermis surrounds the central vasculature as a protective sheath that is analogous to the polarized epithelium in animals, and contains ring-shaped Casparian strips that restrict diffusion. After an initial lag phase, individual endodermal cells suberize in an apparently random fashion to produce 'patchy' suberization that eventually generates a zone of continuous suberin deposition. Casparian strips and suberin lamellae affect paracellular and transcellular transport, respectively. Most angiosperms maintain some isolated cells in an unsuberized state as so-called 'passage cells', which have previously been suggested to enable uptake across an otherwise-impermeable endodermal barrier. Here we demonstrate that these passage cells are late emanations of a meristematic patterning process that reads out the underlying non-radial symmetry of the vasculature. This process is mediated by the non-cell-autonomous repression of cytokinin signalling in the root meristem, and leads to distinct phloem- and xylem-pole-associated endodermal cells. The latter cells can resist abscisic acid-dependent suberization to produce passage cells. Our data further demonstrate that, during meristematic patterning, xylem-pole-associated endodermal cells can dynamically alter passage-cell numbers in response to nutrient status, and that passage cells express transporters and locally affect the expression of transporters in adjacent cortical cells
    corecore