8 research outputs found

    Magnetic field protects plants against high light by slowing down production of singlet oxygen

    Get PDF
    Recombination of the primary radical pair of photosystem II (PSII) of photosynthesis may produce the triplet state of the primary donor of PSII. Triplet formation is potentially harmful because chlorophyll triplets can react with molecular oxygen to produce the reactive singlet oxygen (1O(2)). The yield of 1O(2) is expected to be directly proportional to the triplet yield and the triplet yield of charge recombination can be lowered with a magnetic field of 100-300 mT. In this study, we illuminated intact pumpkin leaves with strong light in the presence and absence of a magnetic field and found that the magnetic field protects against photoinhibition of PSII. The result suggests that radical pair recombination is responsible for significant part of 1O(2) production in the chloroplast. The magnetic field effect vanished if leaves were illuminated in the presence of lincomycin, an inhibitor of chloroplast protein synthesis, or if isolated thylakoid membranes were exposed to light. These data, in turn, indicate that 1O(2) produced by the recombination of the primary charge pair is not directly involved in photoinactivation of PSII but instead damages PSII by inhibiting the repair of photoinhibited PSII. We also found that an Arabidopsis thaliana mutant lacking alpha-tocopherol, a scavenger of 1O(2), is more sensitive to photoinhibition than the wild-type in the absence but not in the presence of lincomycin, confirming that the target of 1O(2) is the repair mechanism

    Automatic identification of crop and weed species with chlorophyll fluorescence induction curves

    No full text
    Automatic identification of crop and weed species is required for many precision farming practices. The use of chlorophyll fluorescence fingerprinting for identification of maize and barley among six weed species was tested. The plants were grown in outdoor pots and the fluorescence measurements were done in variable natural conditions. The measurement protocol consisted of 1 s of shading followed by two short pulses of strong light photosynthetic photon flux density 1700 lmol m-2 s-1) with 0.2 s of darkness in between. Both illumination pulses caused the fluorescence yield to increase by 30–60% and to display a rapid fluorescence transient resembling transients obtained after long dark incubation. A neural network classifier, working on 17 features extracted from each fluorescence induction curve, correctly classified 86.7–96.1% of the curves as crop (maize or barley) or weed. Classification of individual species yielded a 50.2–80.8% rate of correct classifications. The best results were obtained if the training and test sets were measured on the same day, but good results were also obtained when the training and test sets were measured on different dates, and even if fluorescence induction curves measured from both leaf sides were mixed. The results indicate that fluorescence fingerprinting has potential for rapid field separation of crop and weed species

    Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses

    No full text
    corecore