6 research outputs found

    Tetanus neurotoxin HCC protein commits T cell to IFN-γ producing cells

    No full text
    A protective response against tetanus toxin and toxoid demands efficient specific T cell and B cell responses. Tetanus neurotoxin (TeNT), a 150 kDa polypeptide, is the main cause of tetanus disease. TeNT consists of two structurally distinct chains, a 50 kDa N-terminal light (L) and a 100 kDa C-terminal heavy (H) chain. C-terminal heavy (H) chain (fragment C) has two sub-domains named as proximal HCN and carboxy sub-domain or HCC. Beside neural binding property, HCC has been recently found as an immunodominant module of TeNT. In the present study, we investigated the effects of recombinant HCC (rHCC) on the expression of lineage specific transcription factors and secretion of a panel of functional cytokines including IFN-γ, IL-4, and IL-17 from purified human T cells. Our results revealed that T-bet transcript level, as TH1 specific transcription factor, was significantly increased in the cells treated with 10 and 20 μg/ml of rHCC following 48 h treatment(p < 0.05). Treated purified human T cells with rHCC showed significant increase in IFN-γ mRNA level and cytokine secretion, but not IL-4 and IL-17, following 48 h treatment. In conclusion, our results showed that treatment of T cells with r HCC resulted in development of Th1 lineage phenotype, which might lead to a specific and protective antibody mediated response against tetanus toxin. © 2016 by the C.M.B. Association. All rights reserved

    Evaluation of T helper17 as skeletal homeostasis factor in peripheral blood mononuclear cells and T helper cells of end-stage renal disease cases with impaired parathyroid hormone

    No full text
    Background Chronic renal failure is mainly connected with high and low parathyroid hormone (PTH) levels and immunological impairments. The present study aimed to evaluate T helper 17 (Th17) cells as a crucial modulator of the immune system and skeletal homeostasis in hemodialysis patients with impaired intact PTH (iPTH).Methods In this research, blood samples were taken from ESRD patients with high (> 300 pg/mL), normal (150-300 pg/mL), and low (< 150 pg/mL) serum intact parathyroid hormone (iPTH( levels (n = 30 in each group). The frequency of Th17 (CD4(+) IL17(+)) cells was evaluated by flow cytometry in each group. The expression levels of Th17 cell-related master transcription factors, cytokines in peripheral blood mononuclear cells (PBMC), and Th cells, and the level of the mentioned cytokines were determined in the supernatant of PBMCs.Results The number of Th17 cells remarkably increased in subjects with high iPTH against low and normal iPTH. Also, ROR?t and STAT3 levels were significantly higher in high iPTH ESRD patients than in other groups in the expression of mRNA and protein levels. These findings are confirmed by evaluating the IL-17 and IL-23 in the supernatant of cultured PBMCs and isolated Th cells.Conclusion Our findings indicated that increased serum PTH levels in hemodialysis cases may be involved in increasing the differentiation of CD4 + cells to Th17 cells in PBMC
    corecore