852 research outputs found
Phase Evolution in a Kondo Correlated System
The coherence and phase evolution of electrons in a mesoscopic system in the
Kondo correlated regime were studied. The Kondo effect, in turn, is one of the
most fundamental many-body effects where a localized spin interacts with
conduction electrons in a conductor. Results were obtained by embedding a
quantum dot (QD) in a double path electronic interferometer and measuring
interference of electron waves. The Phase was found to evolve in a range twice
as large as the theoretically predicted one. Moreover, the phase proved to be
highly sensitive to the onset of Kondo correlation, thus serving as a new
fingerprint of the Kondo effect.Comment: 4 pages, 4 figures. typos corrected. Changed to APS PRL styl
A game-theoretic approach for reliability evaluation of public transportation transfers with stochastic features
A game-theoretic approach based on the framework of transferable-utility cooperative games is developed to assess the reliability of transfer nodes in public transportation networks in the case of stochastic transfer times. A cooperative game is defined, whose model takes into account the public transportation system, the travel times, the transfers and the associated stochastic transfer times, and the users’ demand. The transfer stops are modeled as the players of such a game, and the Shapley value – a solution concept in cooperative game theory – is used to identify their centrality and relative importance. Theoretical properties of the model are analyzed. A two-level Monte Carlo approximation of the vector of Shapley values associated with the nodes is introduced, which is efficient and able to take into account the stochastic features of the transportation network. The performance of the algorithm is investigated, together with that of its distributed computing variation. The usefulness of the proposed approach for planners and policy makers is shown with a simple example and on a case study from the public transportation network of Auckland, New Zealand
Probabilistic Fragmentation and Effective Power Law
A simple fragmentation model is introduced and analysed. We show that, under
very general conditions, an effective power law for the mass distribution
arises with realistic exponent. This exponent has a universal limit, but in
practice the effective exponent depends on the detailed breaking mechanism and
the initial conditions. This dependence is in good agreement with experimental
results of fragmentation.Comment: 4 pages Revtex, 2 figures, zipped and uuencode
Pseudospin-Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot
We report measurements of the Kondo effect in a double quantum dot (DQD),
where the orbital states act as pseudospin states whose degeneracy contributes
to Kondo screening. Standard transport spectroscopy as a function of the bias
voltage on both dots shows a zero-bias peak in conductance, analogous to that
observed for spin Kondo in single dots. Breaking the orbital degeneracy splits
the Kondo resonance in the tunneling density of states above and below the
Fermi energy of the leads, with the resonances having different pseudospin
character. Using pseudospin-resolved spectroscopy, we demonstrate the
pseudospin character by observing a Kondo peak at only one sign of the bias
voltage. We show that even when the pseudospin states have very different
tunnel rates to the leads, a Kondo temperature can be consistently defined for
the DQD system.Comment: Text and supplementary information. Text: 4 pages, 5 figures.
Supplementary information: 4 pages, 4 figure
- …