49 research outputs found

    Thermo-mechanical behaviour of a compacted swelling clay

    Get PDF
    Compacted unsaturated swelling clay is often considered as a possible buffer material for deep nuclear waste disposal. An isotropic cell permitting simultaneous control of suction, temperature and pressure was used to study the thermo-mechanical behaviour of this clay. Tests were performed at total suctions ranging from 9 to 110 MPa, temperature from 25 to 80 degrees C, isotropic pressure from 0.1 to 60 MPa. It was observed that heating at constant suction and pressure induces either swelling or contraction. The results from compression tests at constant suction and temperature evidenced that at lower suction, the yield pressure was lower, the elastic compressibility parameter and the plastic compressibility parameter were higher. On the other hand, at a similar suction, the yield pressure was slightly influenced by the temperature; and the compressibility parameters were insensitive to temperature changes. The thermal hardening phenomenon was equally evidenced by following a thermo-mechanical path of loading-heating-cooling-reloading

    The Hospitalization Rate of Cerebral Venous Sinus Thrombosis before and during COVID-19 Pandemic Era: A Single-Center Retrospective Cohort Study

    Get PDF
    Objectives: There are several reports of the association between SARS-CoV-2 infection (COVID-19) and cerebral venous sinus thrombosis (CVST). In this study, we aimed to compare the hospitalization rate of CVST before and during the COVID-19 pandemic (before vaccination program). Materials and methods: In this retrospective cohort study, the hospitalization rate of adult CVST patients in Namazi hospital, a tertiary referral center in the south of Iran, was compared in two periods of time. We defined March 2018 to March 2019 as the pre-COVID-19 period and March 2020 to March 2021 as the COVID-19 period. Results: 50 and 77 adult CVST patients were hospitalized in the pre-COVID-19 and COVID-19 periods, respectively. The crude CVST hospitalization rate increased from 14.33 in the pre-COVID-19 period to 21.7 per million in the COVID-19 era (P = 0.021). However, after age and sex adjustment, the incremental trend in hospitalization rate was not significant (95% CrI: -2.2, 5.14). Patients \u3e 50-year-old were more often hospitalized in the COVID-19 period (P = 0.042). SARS-CoV-2 PCR test was done in 49.3% out of all COVID-19 period patients, which were positive in 6.5%. Modified Rankin Scale (mRS) score ≥3 at three-month follow-up was associated with age (P = 0.015) and malignancy (P = 0.014) in pre-COVID period; and was associated with age (P = 0.025), altered mental status on admission time (P\u3c0.001), malignancy (P = 0.041) and COVID-19 infection (P = 0.008) in COVID-19 period. Conclusion: Since there was a more dismal outcome in COVID-19 associated CVST, a high index of suspicion for CVST among COVID-19 positive is recommended

    Seismic response of earth dams considering dynamic properties of unsaturated zone

    No full text
    It is conventionally assumed in the analysis and design of earth dams that the soil located above the phreatic line, i.e. the uppermost seepage flow line, is completely dry. However, there is often an unsaturated flow of water through an unsaturated zone above this borderline and variation in moisture content in this zone results in variation of matric suction throughout this region. Variation of matric suction, in turn, results in variation of effective stresses in this zone. In this research, the seismic response of earth dams in terms of the displacement and acceleration at the crown of the dam as well as the stress distribution in the dam body is investigated. Taking into account the effect of unsaturated zone, a comparison is made to investigate the effect of conventional simplification in ignoring the dynamic characteristics of the unsaturated zone above the phreatic line and the more complicated analysis which includes the unsaturated zone. A function for the soil-water retention curve (SWRC) was assigned to the soil in the unsaturated zone to determine the variation of matric suction in this zone and analyses were made using finite difference software (FLAC). Results are then compared to the conventional method for homogeneous dams. In these analyzes the soil shear modulus was assumed to vary with the mean effective stress both for saturated and unsaturated zones. Among various results, it was notable that the history of crest x-displacement, and acceleration show higher values in models accounting for the unsaturated region. It was attributed to the considerably lower values of damping ratio in the crest region in the unsaturated models

    Seismic response of earth dams considering dynamic properties of unsaturated zone

    No full text
    It is conventionally assumed in the analysis and design of earth dams that the soil located above the phreatic line, i.e. the uppermost seepage flow line, is completely dry. However, there is often an unsaturated flow of water through an unsaturated zone above this borderline and variation in moisture content in this zone results in variation of matric suction throughout this region. Variation of matric suction, in turn, results in variation of effective stresses in this zone. In this research, the seismic response of earth dams in terms of the displacement and acceleration at the crown of the dam as well as the stress distribution in the dam body is investigated. Taking into account the effect of unsaturated zone, a comparison is made to investigate the effect of conventional simplification in ignoring the dynamic characteristics of the unsaturated zone above the phreatic line and the more complicated analysis which includes the unsaturated zone. A function for the soil-water retention curve (SWRC) was assigned to the soil in the unsaturated zone to determine the variation of matric suction in this zone and analyses were made using finite difference software (FLAC). Results are then compared to the conventional method for homogeneous dams. In these analyzes the soil shear modulus was assumed to vary with the mean effective stress both for saturated and unsaturated zones. Among various results, it was notable that the history of crest x-displacement, and acceleration show higher values in models accounting for the unsaturated region. It was attributed to the considerably lower values of damping ratio in the crest region in the unsaturated models

    A study on the saturation degree dependency of the seismic behaviour of retaining walls

    No full text
    Retaining walls are important geotechnical structures that are often used in soil slopes and trenches to bring ground surface at appropriate level for the construction of roads, highways and buildings. It is common practice to assume that the soil behind a retaining structure is either fully saturated or completely dry. However, for the case the soil is partially saturated, mechanical behaviour of the soil above the water table is different than that of the dry soil. Thus, it is necessary to investigate the effect of the variations of degree of saturation on lateral pressure behind retaining walls. In this research, the seismic behaviour of unsaturated soils behind a retaining structure is analysed. A finite difference code was employed to conduct the necessary analyses and a series of equivalent linear analyses is performed to reveal the effect of the degree of saturation on the general response of the retaining structures. The required functions for unsaturated zone were defined and implemented in the code. For this purpose, a soil water retention function was employed and the soil shear modulus is assumed to vary with the mean effective stress for both saturated and unsaturated zones which naturally introduces the required hydro-mechanical coupling in unsaturated and saturated zone. The results of the analyses compared to the conventional methods which does not include the unsaturated mechanical properties, indicate that in the unsaturated state, the increase in the effective stress, and hence, the shear modulus considerably affects the seismic forces on the retaining wall

    A study on the saturation degree dependency of the seismic behaviour of retaining walls

    No full text
    Retaining walls are important geotechnical structures that are often used in soil slopes and trenches to bring ground surface at appropriate level for the construction of roads, highways and buildings. It is common practice to assume that the soil behind a retaining structure is either fully saturated or completely dry. However, for the case the soil is partially saturated, mechanical behaviour of the soil above the water table is different than that of the dry soil. Thus, it is necessary to investigate the effect of the variations of degree of saturation on lateral pressure behind retaining walls. In this research, the seismic behaviour of unsaturated soils behind a retaining structure is analysed. A finite difference code was employed to conduct the necessary analyses and a series of equivalent linear analyses is performed to reveal the effect of the degree of saturation on the general response of the retaining structures. The required functions for unsaturated zone were defined and implemented in the code. For this purpose, a soil water retention function was employed and the soil shear modulus is assumed to vary with the mean effective stress for both saturated and unsaturated zones which naturally introduces the required hydro-mechanical coupling in unsaturated and saturated zone. The results of the analyses compared to the conventional methods which does not include the unsaturated mechanical properties, indicate that in the unsaturated state, the increase in the effective stress, and hence, the shear modulus considerably affects the seismic forces on the retaining wall

    Luminophore charge effects in water-based oxygen sensor films

    No full text
    The neutral luminophore [Ir(ppy)2(fppy)], where fppy = 4-(2-pyridyl)benzaldehyde and ppy = 2-phenylpyridine were prepared and bound to the water soluble amine-functionalized polymer Silamine D208-EDA by either reductive amination or coupling reactions. Pressure sensitive paint (psp) formulations were made by blending microcrystalline cellulose (MC) with these polymer-luminophores and the psp photophysical properties, oxygen sensitivities and luminescent microscopies were compared to psps made from the charged luminophore [Ir(fppy)2(t-Bu-iCN)2]CF3SO 3, where t-Bu-iCN = tert-butyl isocyanide, attached by reductive amination to Silamine D208-EDA. The excited-state lifetime for the neutral luminophore in psp blends was almost independent of MC concentration whereas those of the charge luminophore increased with MC concentration. The nearly 30% increase in oxygen sensitivity of psps made with the charged compared to neutral polymer luminophores is ascribed to the association of charged luminophores with polar groups on the surface of MC. \ua9 2011 Elsevier B.V. All rights reserved.Peer reviewed: YesNRC publication: Ye
    corecore