31 research outputs found

    Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA:dextran:NH4I based polymer blend electrolytes

    Get PDF
    Proton conducting solid polymer blend electrolytes based on poly(vinyl alcohol)(PVA):dextran that were doped with different quantities of ammonium iodide (NH4I) were prepared. The X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) study were carried out to examine the compatibility of NH4I withPVA:dextran polymers. FTIR spectroscopy assessment was used to establish the presence of a complex formation between the PVA:dextran and added salt through the modification and reduction in the intensity of FTIR bands relevant to the functional groups. The field emission scanning electron microscopy (FESEM) examination was used to assess the channels for proton transport. Electrical impedance spectroscopy (EIS) was used to analyse the samples conductivity behaviour. The sample with 20 wt.% of added salt has shown a high DC conductivity which can be employed in electrochemical devices such as EDLC. It is also demonstrated by the transference number (TNM) and linear sweep voltammetry (LSV) that it is appropriate to use the largest conducting sample for electrochemical device. There was electrochemical stability of the electrolyte sample with voltage sweeping linearly to 1.3 V. It is shown by the outcome of cyclic voltammetry (CV) plot that charge storage at the site of electrode-electrolyte is non-Faradiac. A high drop voltage (Vd=IR) is implied by the usual galvanostatic charge-discharge. The equivalent series resistance (Res) increases as a result of the increase in Vd all the way through the charge-discharge cycle. Specific capacitance (Csp) is nearly constant from the foremost cycle to the 100th cycle, with average of 4.2 F/g

    Compatible solid polymer electrolyte based on methyl cellulose for energy storage application: structural, electrical, and electrochemical properties

    Get PDF
    Compatible green polymer electrolytes based on methyl cellulose (MC) were prepared for energy storage electrochemical double-layer capacitor (EDLC) application. X-ray diffraction (XRD) was conducted for structural investigation. The reduction in the intensity of crystalline peaks of MC upon the addition of sodium iodide (NaI) salt discloses the growth of the amorphous area in solid polymer electrolytes (SPEs). Impedance plots show that the uppermost conducting electrolyte had a smaller bulk resistance. The highest attained direct current DC conductivity was 3.01 × 10−3 S/cm for the sample integrated with 50 wt.% of NaI. The dielectric analysis suggests that samples in this study showed non-Debye behavior. The electron transference number was found to be lower than the ion transference number, thus it can be concluded that ions are the primary charge carriers in the MC–NaI system. The addition of a relatively high concentration of salt into the MC matrix changed the ion transfer number from 0.75 to 0.93. From linear sweep voltammetry (LSV), the green polymer electrolyte in this work was actually stable up to 1.7 V. The consequence of the cyclic voltammetry (CV) plot suggests that the nature of charge storage at the electrode–electrolyte interfaces is a non-Faradaic process and specific capacitance is subjective by scan rates. The relatively high capacitance of 94.7 F/g at a sweep rate of 10 mV/s was achieved for EDLC assembly containing a MC–NaI system

    Plasticized Polymer Blend Electrolyte Based on Chitosan for Energy Storage Application: Structural, Circuit Modeling, Morphological and Electrochemical Properties

    No full text
    Chitosan (CS)-dextran (DN) biopolymer electrolytes doped with ammonium iodide (NH4I) and plasticized with glycerol (GL), then dispersed with Zn(II)-metal complex were fabricated for energy device application. The CS:DN:NH4I:Zn(II)-complex was plasticized with various amounts of GL and the impact of used metal complex and GL on the properties of the formed electrolyte were investigated.The electrochemical impedance spectroscopy (EIS) measurements have shown that the highest conductivity for the plasticized system was 3.44 × 10−4 S/cm. From the x-ray diffraction (XRD) measurements, the plasticized electrolyte with minimum degree of crystallinity has shown the maximum conductivity. The effect of (GL) plasticizer on the film morphology was studied using FESEM. It has been confirmed via transference number analysis (TNM) that the transport mechanism in the prepared electrolyte is predominantly ionic in nature with a high transference number of ion (ti)of 0.983. From a linear sweep voltammetry (LSV) study, the electrolyte was found to be electrochemically constant as the voltage sweeps linearly up to 1.25 V. The cyclic voltammetry (CV) curve covered most of the area of the current–potential plot with no redox peaks and the sweep rate was found to be affecting the capacitance. The electric double-layer capacitor (EDLC) has shown a great performance of specific capacitance (108.3 F/g), ESR(47.8 ohm), energy density (12.2 W/kg) and power density (1743.4 W/kg) for complete 100 cycles at a current density of 0.5 mA cm−2

    Design of Polymer Blends Based on Chitosan:POZ with Improved Dielectric Constant for Application in Polymer Electrolytes and Flexible Electronics

    No full text
    There is a considerable demand for the development and application of polymer materials in the flexible electronic- and polymer-based electrolyte technologies. Chitosan (CS) and poly(2-ethyl-2-oxazoline) (POZ) materials were blended with different ratios to obtain CS:POZ blend films using a straightforward solution cast technique. The work was involved a range of characteristic techniques, such as impedance spectroscopy, X-ray diffraction (XRD), and optical microscopy. From the XRD spectra, an enhancement in the amorphous nature in CS:POZ blend films was revealed when compared to the pure state of CS. The enhancement was verified from the peak broadening in CS:POZ blend films in relative to the one in crystalline peaks of the CS polymer. The optical micrograph study was used to designate the amorphous and crystalline regions by assigning dark and brilliant phases, respectively. Upon increasing POZ concentration, the dielectric constant was found to increase up to ɛ′ = 6.48 (at 1 MHz) at 15 wt.% of POZ, and then a drop was observed beyond this amount. The relatively high dielectric constant and dielectric loss were found at elevated temperatures. The increase of POZ concentration up to 45 wt.% made the loss tangent to shift to the lower frequency side, which is related to increasing resistivity. The increases of dielectric constant and dielectric loss with temperature were attributed to the increase of polarisation. The loss tangent peaks were found to shift to the higher frequency side as temperature elevated. Obvious relaxation peaks were observed in the imaginary part of electric modulus, and no peaks were found in the dielectric loss spectra. The concentration dependent of M″ peaks was found to follow the same trend of loss tangent peaks versus POZ content. The relaxation process was studied in terms of electric modulus parameters

    Sikap terhadap Program Peningkatan Pendapatan dan Perubahan Kepada Sosio- Ekonomi Peserta Orang Asli

    Full text link
    Kajian ini dilakukan untuk menentukan hubungan antara sikap terhadap Program Peningkatan Pendapatan (PPP) dan Perubahan kepada sosio-ekonomi dalam kalangan peserta PPP Orang Asli. Secara khususnya, kajian ini bertujuan untuk i) menghuraikan latar belakang responden; ii) mengenal pasti tahap sikap dan Perubahan sosio-ekonomi; dan iii) menentukan hubungan antara sikap terhadap PPP dan Perubahan kepada sosio-ekonomi. Kajian ini melibatkan 110 Orang Asli yang menyertai PPP di negeri Perak. Pemilihan responden adalah secara persampelan bertujuan. Data dikumpul menggunakan borang soal selidik melalui prosedur tadbir sendiri dengan pemantauan minima oleh penyelidik. Hasil kajian mendapati antara projek PPP yang dijalankan di negeri Perak adalah tanaman sayuran, limau kasturi dan pisang, serta ternakan kambing, lembu, ikan tilapia dan kelulut. Dapatan kajian menunjukkan adanya peningkatan pendapatan dalam kalangan responden walaupun majoriti daripada mereka memperoleh pendapatan bulanan kurang daripada RM1000. Secara keseluruhannya, majoriti responden mempunyai sikap yang positif terhadap PPP, manakala Perubahan kepada sosio- ekonomi berada pada tahap yang sederhana. Hasil kajian juga menunjukkan hubungan positif secara signifikan antara sikap terhadap PPP dengan dimensi Perubahan sosio-ekonomi (r = .430 hingga r = .681; p<.01). Semakin positif sikap peserta terhadap PPP, semakin meningkat Perubahan sosio- ekonomi mereka. Sikap positif peserta Orang Asli terhadap PPP adalah penting kerana sikap berkait rapat dengan tingkah laku, mempengaruhi keterlibatan peserta dalam program ini dan seterusnya meningkatkan status sosio-ekonomi kepada tahap yang lebih baik lagi. Oleh itu, pihak-pihak yang bertanggungjawab seperti JAKOA perlu terus memainkan peranan dalam memberikan galakan dan sokongan kepada komuniti ini agar mereka terus bermotivasi, terbuka kepada inovasi dan terus berusaha untuk meningkatkan status sosio-ekonomi dan kualiti hidup mereka

    Impregnation of [Emim]Br ionic liquid as plasticizer in biopolymer electrolytes for EDLC application

    No full text
    A solid polymer electrolyte based on maltodextrin (MX) – methylcellulose (MC) – ammonium bromide (NH4Br) was successfully prepared via the solution casting method by impregnating different amounts of [Emim]Br. Interaction of the electrolyte components was proven by the Fourier transmission infrared (FTIR) and X-ray diffraction (XRD) analyses. With the addition of 30 wt% [Emim]Br (L30), the conductivity was enhanced to (3.39 ± 0.22) × 10-4 S cm-1 at room temperature. The L30 electrolyte achieved the lowest Ea value of 0.15 eV that obeyed the Arrhenius theory. Ionic conductivity was found to influence the ionic mobility (µ), number density (n) and diffusion coefficient (D), which was investigated using the EIS and FTIR methods. Dielectric analysis was further verified the conductivity trend and proved the non-Debye behavior. The electrolyte with 30 wt% [Emim]Br obtained the lowest Tg value of 68.91 °C. TGA/DTG results indicated that the electrolytes were thermally stable until ~ 400 °C. The ions were the main charge carriers based on the TNM result. LSV measurement revealed that the L30 electrolyte decomposed at 1.56 V. In the fabricated EDLC, specific capacitance values were measured using CV and charge–discharge analyses where the values obtained were 9.85 F g-1 and 9.47 F g-1, respectively. Energy and power densities were stabilized in the range of 0.1–0.2 Wh kg-1 and 20–25 W kg-1, respectively as the EDLC completed the cycles

    Plasticized polymer blend electrolyte based on chitosan for energy storage application: structural, circuit modeling, morphological and electrochemical properties

    Get PDF
    Chitosan (CS)-dextran (DN) biopolymer electrolytes doped with ammonium iodide (NH4I) and plasticized with glycerol (GL), then dispersed with Zn(II)-metal complex were fabricated for energy device application. The CS:DN:NH4I:Zn(II)-complex was plasticized with various amounts of GL and the impact of used metal complex and GL on the properties of the formed electrolyte were investigated.The electrochemical impedance spectroscopy (EIS) measurements have shown that the highest conductivity for the plasticized system was 3.44 × 10−4 S/cm. From the x-ray diffraction (XRD) measurements, the plasticized electrolyte with minimum degree of crystallinity has shown the maximum conductivity. The effect of (GL) plasticizer on the film morphology was studied using FESEM. It has been confirmed via transference number analysis (TNM) that the transport mechanism in the prepared electrolyte is predominantly ionic in nature with a high transference number of ion (ti)of 0.983. From a linear sweep voltammetry (LSV) study, the electrolyte was found to be electrochemically constant as the voltage sweeps linearly up to 1.25 V. The cyclic voltammetry (CV) curve covered most of the area of the current–potential plot with no redox peaks and the sweep rate was found to be affecting the capacitance. The electric double-layer capacitor (EDLC) has shown a great performance of specific capacitance (108.3 F/g), ESR(47.8 ohm), energy density (12.2 W/kg) and power density (1743.4 W/kg) for complete 100 cycles at a current density of 0.5 mA cm−2

    Plasticized Sodium-Ion Conducting PVA Based Polymer Electrolyte for Electrochemical Energy Storage—EEC Modeling, Transport Properties, and Charge-Discharge Characteristics

    No full text
    This report presents the preparation of plasticized sodium ion-conducting polymer electrolytes based on polyvinyl alcohol (PVA)via solution cast technique. The prepared plasticized polymer electrolytes were utilized in the device fabrication of electrical double-layer capacitors (EDLCs). On an assembly EDLC system, cyclic voltammetry (CV), electrical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), transfer number measurement (TNM) and charge–discharging responses were performed. The influence of plasticization on polymer electrolytes was investigated in terms of electrochemical properties applying EIS and TNM. The EIS was fitted with electrical equivalent circuit (EEC) models and ion transport parameters were estimated with the highest conductivity of 1.17 × 10−3 S cm−1 was recorded. The CV and charge-discharging responses were used to evaluate the capacitance and the equivalent series resistance (ESR), respectively. The ESR of the highest conductive sample was found to be 91.2 Ω at the first cycle, with the decomposition voltage of 2.12 V. The TNM measurement has shown the dominancy of ions with tion = 0.982 for the highest conducting sample. The absence of redox peaks was proved via CV, indicating the charge storing process that comprised ion accumulation at the interfacial region. The fabricated EDLC device is stable for up to 400 cycles. At the first cycle, a high specific capacitance of 169 F/g, an energy density of 19 Wh/kg, and a power density of 600 W/kg were obtained

    Structural, impedance, and EDLC characteristics of Proton conducting chitosan-based polymer blend electrolytes with high electrochemical stability

    Get PDF
    In this report, a facile solution casting technique was used to fabricate polymer blend electrolytes of chitosan (CS):poly (ethylene oxide) (PEO):NH4SCN with high electrochemical stability (2.43V). Fourier transform infrared (FTIR) spectroscopy was used to investigate the polymer electrolyte formation. For the electrochemical property analysis, cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) techniques were carried out. Referring to the FTIR spectra, a complex formation between the added salt and CS:PEO was deduced by considering the decreasing and shifting of FTIR bands intensity in terms of functional groups. The CS:PEO:NH4SCN electrolyte was found to be electrochemically stable as the applied voltage linearly swept up to 2.43V. The cyclic voltammogram has presented a wide potential window without showing any sign of redox peaks on the electrode surface. The proved mechanisms of charge storage in these fabricated systems were found to be double layer charging. The EIS analysis showed the existence of bulk resistance, wherein the semicircle diameter decreased with increasing salt concentration. The calculated maximum DC conductivity value was observed to be 2.11 × 10−4 S/cm for CS:PEO incorporated with 40 wt% of NH4SCN salt. The charged species in CS:PEO:NH4SCN electrolytes were considered to be predominantly ionic in nature. This was verified from transference number analysis (TNM), in which ion and electron transference numbers were found to be tion = 0.954 and tel = 0.045, respectively. The results obtained for both ion transference number and DC conductivity implied the possibility of fabricating electrolytes for electrochemical double layer capacitor (EDLC) device application. The specific capacitance of the fabricated EDLC was obtained from the area under the curve of the CV plot

    The Study of Electrical and Electrochemical Properties of Magnesium Ion Conducting CS: PVA Based Polymer Blend Electrolytes: Role of Lattice Energy of Magnesium Salts on EDLC Performance

    No full text
    Plasticized magnesium ion conducting polymer blend electrolytes based on chitosan (CS): polyvinyl alcohol (PVA) was synthesized with a casting technique. The source of ions is magnesium triflate Mg(CF3SO3)2, and glycerol was used as a plasticizer. The electrical and electrochemical characteristics were examined. The outcome from X-ray diffraction (XRD) examination illustrates that the electrolyte with highest conductivity exhibits the minimum degree of crystallinity. The study of the dielectric relaxation has shown that the peak appearance obeys the non-Debye type of relaxation process. An enhancement in conductivity of ions of the electrolyte system was achieved by insertion of glycerol. The total conductivity is essentially ascribed to ions instead of electrons. The maximum DC ionic conductivity was measured to be 1.016 × 10−5 S cm−1 when 42 wt.% of plasticizer was added. Potential stability of the highest conducting electrolyte was found to be 2.4 V. The cyclic voltammetry (CV) response shows the behavior of the capacitor is non-Faradaic where no redox peaks appear. The shape of the CV response and EDLC specific capacitance are influenced by the scan rate. The specific capacitance values were 7.41 F/g and 32.69 F/g at 100 mV/s and 10 mV/s, respectively. Finally, the electrolyte with maximum conductivity value is obtained and used as electrodes separator in the electrochemical double-layer capacitor (EDLC) applications. The role of lattice energy of magnesium salts in energy storage performance is discussed in detail
    corecore