1,637,483 research outputs found

    A magnetic cycle of tau Bootis? The coronal and chromospheric view

    Full text link
    Tau Bootis is a late F-type main sequence star orbited by a Hot Jupiter. During the last years spectropolarimetric observations led to the hypothesis that this star may host a global magnetic field that switches its polarity once per year, indicating a very short activity cycle of only one year duration. In our ongoing observational campaign, we have collected several X-ray observations with XMM-Newton and optical spectra with TRES/FLWO in Arizona to characterize tau Boo's corona and chromosphere over the course of the supposed one-year cycle. Contrary to the spectropolarimetric reconstructions, our observations do not show indications for a short activity cycle.Comment: 4 pages, 2 figures, appeared in Astronomical Notes 333, 1, 26-29 (2012

    Keldysh field theory for nonequilibrium condensation in a parametrically pumped polariton system

    Get PDF
    We develop a quantum field theory for parametrically pumped polaritons using Keldysh Green's function techniques. By considering the mean-field and Gaussian fluctuations, we find that the low energy physics of the highly non-equilibrium phase transition to the optical parametric oscillator regime is in many ways similar to equilibrium condensation. In particular, we show that this phase transition can be associated with an effective chemical potential, at which the system's bosonic distribution function diverges, and an effective temperature. As in equilibrium systems, the transition is achieved by tuning this effective chemical potential to the energy of the lowest normal mode. Since the occupations of the modes are available, we determine experimentally observable properties, such as the luminescence and absorption spectra.Comment: 16 pages, 14 figure

    Dispersive photoluminescence decay by geminate recombination in amorphous semiconductors

    Full text link
    The photoluminescence decay in amorphous semiconductors is described by power law t−deltat^{-delta} at long times. The power-law decay of photoluminescence at long times is commonly observed but recent experiments have revealed that the exponent, deltasim1.2−1.3delta sim 1.2-1.3, is smaller than the value 1.5 predicted from a geminate recombination model assuming normal diffusion. Transient currents observed in the time-of-flight experiments are highly dispersive characterized by the disorder parameter alphaalpha smaller than 1. Geminate recombination rate should be influenced by the dispersive transport of charge carriers. In this paper we derive the simple relation, delta=1+alpha/2delta = 1+ alpha/2 . Not only the exponent but also the amplitude of the decay calculated in this study is consistent with measured photoluminescence in a-Si:H.Comment: 18pages. Submitted for the publication in Phys. Rev.
    • …
    corecore