863 research outputs found

    Palaeo plant diversity in subtropical Africa – ecological assessment of a conceptual model of climate–vegetation interaction

    Get PDF
    We here critically re-assess a conceptual model dealing with the potential effect of plant diversity on climate–vegetation feedback, and provide an improved version adjusted to plant types that prevailed during the African Humid Period (AHP). Our work contributes to the understanding of the timing and abruptness of vegetation decline at the end of the AHP, investigated by various working groups during the past two decades using a wide range of model and palaeoproxy reconstruction approaches. While some studies indicated an abrupt collapse of vegetation at the end of the AHP, others suggested a gradual decline. Claussen et al. (2013) introduced a new aspect in the discussion, proposing that plant diversity in terms of moisture requirements could affect the strength of climate–vegetation feedback. In a conceptual model study, the authors illustrated that high plant diversity could stabilize an ecosystem, whereas a reduction in plant diversity might allow for an abrupt regime shift under gradually changing environmental conditions. Based on recently published pollen data and the current state of ecological literature, we evaluate the representation of climate–vegetation feedback in this conceptual approach, and put the suggested conclusions into an ecological context. In principle, the original model reproduces the main features of different plant types interacting together with climate although vegetation determinants other than precipitation are neglected. However, the model cannot capture the diversity of AHP vegetation. Especially tropical gallery forest taxa, indirectly linked to local precipitation, are not appropriately represented. In order to fill the gaps in the description of plant types regarding AHP diversity, we modify the original model in four main aspects. First, the growth ranges in terms of moisture requirements are extended by upper limits to represent full environmental envelopes. Second, data-based AHP plant types replace the hypothetical plant types. Third, the tropical gallery forest type follows the gradual insolation forcing with a linear approximation because it relies more on large scale climate than on regional precipitation amounts. Fourth, we replace the dimensionless vegetation cover fractions with individual effective leaf areas to capture different contributions to climate–vegetation feedback. These adjustments allow for the consideration of a broader spectrum of plant types, plant-climate feedbacks, and implicitly for plant-plant interactions. With the consideration of full environmental envelopes and the prescribed retreat of the tropical gallery forest type we can simulate a diverse mosaic-like environment as it was reconstructed from pollen. Transient simulations of this diverse environment support the buffering effect of high functional diversity on ecosystem performance and precipitation, concluded by Claussen et al. (2013) from the simple approach. Sensitivity studies with different combinations of plant types highlight the importance of plant composition on system stability, and the stabilizing or destabilizing potential a single functional type may inherit. In a broader view, the adjusted model provides a useful tool to study the roles of real plant types in an ecosystem and their combined climate–vegetation feedback under changing precipitation regimes

    The Evolutionary Origin of the Runx/CBFbeta Transcription Factors – Studies of the Most Basal Metazoans

    Get PDF
    BACKGROUND. Members of the Runx family of transcriptional regulators, which bind DNA as heterodimers with CBFβ, are known to play critical roles in embryonic development in many triploblastic animals such as mammals and insects. They are known to regulate basic developmental processes such as cell fate determination and cellular potency in multiple stem-cell types, including the sensory nerve cell progenitors of ganglia in mammals. RESULTS. In this study, we detect and characterize the hitherto unexplored Runx/CBFβ genes of cnidarians and sponges, two basal animal lineages that are well known for their extensive regenerative capacity. Comparative structural modeling indicates that the Runx-CBFβ-DNA complex from most cnidarians and sponges is highly similar to that found in humans, with changes in the residues involved in Runx-CBFβ dimerization in either of the proteins mirrored by compensatory changes in the binding partner. In situ hybridization studies reveal that Nematostella Runx and CBFβ are expressed predominantly in small isolated foci at the base of the ectoderm of the tentacles in adult animals, possibly representing neurons or their progenitors. CONCLUSION. These results reveal that Runx and CBFβ likely functioned together to regulate transcription in the common ancestor of all metazoans, and the structure of the Runx-CBFβ-DNA complex has remained extremely conserved since the human-sponge divergence. The expression data suggest a hypothesis that these genes may have played a role in nerve cell differentiation or maintenance in the common ancestor of cnidarians and bilaterians.National Science Foundation (IBN-0212773, FP-91656101-0); Boston University SPRInG (20-202-8103-9); Israel Science Foundation (825/07

    A 42.3-43.6 GHz spectral survey of Orion BN/KL: First detection of the v=0 J=1-0 line from the isotopologues 29SiO and 30SiO

    Full text link
    We have surveyed molecular line emission from Orion BN/KL from 42.3 to 43.6 GHz with the Green Bank Telescope. Sixty-seven lines were identified and ascribed to 13 different molecular species. The spectrum at 7 mm is dominated by SiO, SO2, CH3OCH3, and C2H5CN. Five transitions have been detected from the SiO isotopologues 28SiO, 29SiO, and 30SiO. We report here for the first time the spectra of the 29SiO and 30SiO v=0 J=1-0 emission in Orion BN/KL, and we show that they have double-peaked profiles with velocity extents similar to the main isotopologue. The main motivation for the survey was the search of high-velocity (100-1000 km/s) outflows in the BN/KL region as traced by SiO Doppler components. Some of the unidentified lines in principle could be high-velocity SiO features, but without imaging data their location cannot be established. Wings of emission are present in the v=0 28SiO, 29SiO and 30SiO profiles, and we suggest that the v=0 emission from the three isotopologues might trace a moderately high-velocity (~30-50 km/s) component of the flows around the high-mass protostar Source I in the Orion BN/KL region. We also confirm the 7 mm detection of a complex oxygen-bearing species, acetone (CH3COCH3), which has been recently observed towards the hot core at 3 mm, and we have found further indications of the presence of long cyanopolyynes (HC5N and HC7N) in the quiescent cold gas of the extended ridge.Comment: 27 pages, 3 figures, accepted by Ap

    Mate limitation in sea lice infesting wild salmon hosts : the influence of parasite sex ratio and aggregation

    Get PDF
    Mate limitation in dioecious parasite species has the potential to impact parasite population growth. Our focus of interest was the influence of parasite sex distribution among hosts on parasite reproduction and transmission dynamics for populations of ectoparasitic sea lice (Lepeophtheirus salmonis Krøyer) establishing on wild juvenile salmon hosts. The data included more than 139,000 out-migrating juvenile pink salmon (Oncorhynchus gorbuscha (Walbaum)) and chum salmon (Oncorhynchus keta (Walbaum)) in British Columbia, Canada, sampled over nine years. For almost all years, the sex ratio of the reproductive stages of the sea lice was female-biased. The probability of a female being able to mate (i.e., of being attached to a fish also carrying a male louse) increased with increasing parasite abundance and parasite aggregation. We compared, with expected modeling predictions, the observed prevalence of pairs of sea lice (i.e., one reproductive louse of each sex) on a given fish and the observed probability of a female being able to mate. These comparisons showed that male and female sea lice tend to be distributed together rather than separately on hosts. Distribution together means that sea lice are distributed randomly on hosts according to a common negative binomial distribution, whereas distribution separately means that males are distributed according to a negative binomial and females are distributed in their own negative binomial among hosts. Despite the tendency for distribution together we found that, in every year, at least 30% of reproductive female sea lice experience mate limitation. This Allee effect will result in submaximal rates of parasite reproduction at low parasite abundances and may limit parasite transmission. The work has important implications for salmon parasite management and the health both of captive farm salmon populations and migratory wild stocks. More broadly, these results demonstrate the potential impact of mate limitation as a constraint to the establishment and spread of wild ectoparasite populations

    ASYMMETRIC LEAVES1 regulates abscission zone placement in Arabidopsis flowers

    Get PDF
    BACKGROUND: The sepals, petals and stamens of Arabidopsis flowers detach via abscission zones formed at their boundaries with the underlying receptacle. The ASYMMETRIC LEAVES1 (AS1) MYB transcription factor plays a critical role in setting boundaries between newly formed leaf primordia and the shoot meristem. By repressing expression of a set of KNOTTED1-LIKE HOMEODOMAIN (KNOX) genes from developing leaf primordia, AS1 and its partner ASYMMETRIC LEAVES2 allow the patterning and differentiation of leaves to proceed. Here we show a unique role for AS1 in establishing the positions of the sepal and petal abscission zones in Arabidopsis flowers. RESULTS: In as1 mutant flowers, the sepal abscission zones are displaced into inverted V-shaped positions, leaving behind triangular stubs of tissue when the organs abscise. Movement of the petal abscission zones is also apparent. Abscission of the medial sepals is delayed in as1 flowers; loss of chlorophyll in the senescing sepals contrasts with proximal zones that remain green. AS1 has previously been shown to restrict expression of the KNOX gene, BREVIPEDICELLUS (BP), from the sepals. We show here that loss of BP activity in as1 flowers is sufficient to restore the positions of the sepal and petal abscission zones, the sepal-receptacle boundary of the medial sepals and the timing of their abscission. CONCLUSIONS: Our results indicate that AS1 activity is critical for the proper placement of the floral organ abscission zones, and influences the timing of organ shedding

    Evaluation of Striped Bass Stocks in Virginia: Monitoring and Tagging Studies, 2015-2019 Progress Report 1 September 2016 - 31 November 2017

    Get PDF
    This report presents the results of striped bass (Morone saxatilis) tagging and monitoring activities in Virginia during the period 1 September 2016 through 31 August 2017. It includes an assessment of the biological characteristics of striped bass taken from the 2017 spring spawning run and estimates of annual survival and fishing mortality based on annual spring tagging. Also included is an investigation on the potential use of close-kin analyses to determine the size of the spawning stock in the Rappahannock River and an evaluation of mortality rates associated with the bacterial dermal disease mycobacteriosis in relation to water temperatures and dissolved oxygen. The information contained in this report is required by the Atlantic States Marine Fisheries Commission and is used to implement a coordinated management plan for striped bass in Virginia, and along the eastern seaboard

    Raman and infrared spectra of dimethyl ether 13C-isotopologue (CH3O13CH3) from a CCSD(T) potential energy surface

    Get PDF
    So far, no experimental data of the infrared and Raman spectra of 13C isotopologue of dimethyl ether are available. With the aim of providing some clues of its low-lying vibrational bands and with the hope of contributing in a next spectral analysis, a number of vibrational transition frequencies below 300 cm−1 of the infrared spectrum and around 400 cm−1 of the Raman spectrum have been predicted and their assignments were proposed. Calculations were carried out through an ab initio three dimensional potential energy surface based on a previously reported one for the most abundant dimethyl ether isotopologue (M. Villa et al., J. Phys. Chem. A 115 (2011) 13573). The potential function was vibrationally corrected and computed with a highly correlated CCSD(T) method involving the COC bending angle and the two large amplitude CH3 internal rotation degrees of freedom. Also, the Hamiltonian parameters could represent a support for the spectral characterization of this species. Although the computed vibrational term values are expected to be very accurate, an empirical adjustment of the Hamiltonian has been performed with the purpose of anticipating some workable corrections to any possible divergence of the vibrational frequencies. Also, the symmetry breaking derived from the isotopic substitution of 13C in the dimethyl ether was taken into account when the symmetrization procedure was applied

    Using the Voice of the Student to Evaluate Learning Management Systems

    Get PDF
    A learning management system is an educational tool employed in higher education to organize, document, track, report, and deliver courses. Selecting the appropriate learning management system is a critical decision for a university. This study explores the usability of two leading systems, Blackboard and Canvas, from the students’ perspective. The goal is to gather and analyze user preferences in order to select an appropriate learning management system. Data was collected through surveys of student’s experience with the two learning management systems. The survey evaluated the ease of the following tasks: finding course documents, viewing grades, ease of navigation, intuitiveness, and communicating with professors. A usability study was also conducted on both learning management systems. The information was combined to provide an overall ranking of the learning management systems

    Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy

    Get PDF
    For the first time, a molecular symmetry group (MSG) analysis has been undertaken in the investigation of the electronic spectroscopy of p-xylene (p-dimethylbenzene). Torsional and vibration-torsional (vibtor) levels in the S1 state and ground state of the cation of p-xylene (p-dimethylbenzene) are investigated using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the present work, we concentrate on the 0–350 cm 1 region, where there are a number of torsional and vibtor bands and we discuss the assignment of this region. In an accompanying paper [Tuttle et al. J. Chem. Phys. XXX, xxxxxx (2016)], we examine the 350–600 cm 1 region where vibtor levels are observed as part of a Fermi resonance. The similarity of much of the observed spectral activity to that in the related substituted benzenes, toluene and para-fluorotoluene, is striking, despite the different symmetries. The discussion necessitates a consideration of the MSG of p-xylene, which has been designated G72, but we shall also designate [3,3]D2h and we include the symmetry operations, character table and direct product table for this. We also discuss the symmetries of the internal rotor (torsional) levels and the selection rules for the particular electronic transition of p-xylene investigated here
    corecore