9 research outputs found

    Temperature Dependence of CsI:Tl Scintillation Pulse Shapes from -183°C to +90°C Measured with a SiPM Readout

    No full text
    A custom designed cryostat was constructed to measure the response of a CsI:Tl scintillator in temperature range from -183°C up to +90°C. The light readout was realized using a SiPM developed by FBK in near ultraviolet high density (NUV-HD) technology. The crystal and the SiPM were installed on separated copper frames. The crystal was cooled down by liquid nitrogen, while the SiPM was kept at temperature close to room temperature. A separation of 1 mm was kept between the crystal and the photodetector to ensure thermal isolation. The temperature of the crystal could be varied by heaters on the scintillator frame and was continuously monitored using a coil shaped resistance thermometer. The CsI:Tl scintillation decay profiles were recorded in the entire temperature range provided by the cryostat

    MCORD - MPD Cosmic Ray Detector a new features

    No full text
    The main detector system at the Nuclotron-based Ion Collider fAcility (NICA) located in Dubna, Russia is the Multi-Purpose Detector (MPD). For better calibration reason, the MPD needs an additional trigger system for an off-beam calibration of MPD sub-detectors and for rejection (veto) of cosmic muons. The system should also be useful for practical astrophysics observations of cosmic showers. The consortium NICA-PL group defines goals and basic assumptions for the MPD Cosmic Ray Detector (MCORD). This article describes the conceptual design and simulation plans of the MCORD detector based on plastic scintillators with SiPM photodetectors and electronic digital system based on the MicroTCA crate

    Scintillation response to gamma-rays measured at wide temperature range for Tl doped CsI with SiPM readout

    No full text
    A custom design cryostat was constructed to study the temperature dependence of relative light yield and non-proportionality trends of scintillators between −182 °C and +152 °C. CsI:Tl crystal response to γ-rays and X-rays was investigated between 14 keV and 662 keV. Scintillation light was detected by a SiPM device, which was installed on a copper frame separated from the crystal and the cooling rod to enable operating the device at room temperature. The scintillation efficiency of CsI:Tl is peaked at about room temperature. The light yield of CsI:Tl at temperature close to liquid nitrogen boiling point is reduced by a factor of 15 in comparison to room temperature conditions. The non-proportionality of CsI:Tl scintillation response is high at low temperatures and is getting more proportional with increasing temperature

    MCORD - MPD Cosmic Ray Detector a new features

    Get PDF
    The main detector system at the Nuclotron-based Ion Collider fAcility (NICA) located in Dubna, Russia is the Multi-Purpose Detector (MPD). For better calibration reason, the MPD needs an additional trigger system for an off-beam calibration of MPD sub-detectors and for rejection (veto) of cosmic muons. The system should also be useful for practical astrophysics observations of cosmic showers. The consortium NICA-PL group defines goals and basic assumptions for the MPD Cosmic Ray Detector (MCORD). This article describes the conceptual design and simulation plans of the MCORD detector based on plastic scintillators with SiPM photodetectors and electronic digital system based on the MicroTCA crate

    Status and initial physics performance studies of the MPD experiment at NICA

    No full text
    The Nuclotron-based Ion Collider fAcility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document provides an overview of the landscape of the investigation of the QCD phase diagram in the region of maximum baryonic density, where NICA and MPD will be able to provide significant and unique input. It also provides a detailed description of the MPD set-up, including its various subsystems as well as its support and computing infrastructures. Selected performance studies for particular physics measurements at MPD are presented and discussed in the context of existing data and theoretical expectations

    GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era

    No full text
    corecore