189 research outputs found

    Quantification of p38/synaptophysin in highly purified adrenal medullary chromaffin vesicles

    Get PDF
    p38/synaptophysin is a membrane protein present in clear (synaptic) vesicles of neurons and endocrine ceHs [1-4]. From the amino acid sequence deduced from cDNAs encoding p38/synaptophysin, a model with several membrane spanning polypeptide segments and a carboxy-terminal protein domain exposed to the cytoplasmic surface has been constructed [5-7]. The function of p38/synaptophysin is not known. It has been suggested to form a transmembrane channel for ions, or to interact with cytoplasmic factors via its cytoplasmic domain [7]. Since synaptophysin binds Ca2 +, it may also play a role in the release of neurotransmitters stored in clear (synaptic) vesicles [3]. Recently it has been reported [8] that p38/synaptophysin also occurs in hormone containing large dense core vesicles. This would imply that p38/synaptophysin could fulfill similar functions as described above in chromaffin and other secretory ceHs containing large dense core vesicles. In dear (synaptic) vesicles p38/synaptophysin constitutes 7.51Jfo of the vesicle membrane proteins [I]. The amount of p38/synaptophysin in large dense core vesides is not known. Here we report on the quantification of p38/synaptophysin in highly purified chromaffin secretory veside

    Chromagranin A in the endorine Pancreas: Intracellular or extracellular function?

    Get PDF

    Ca2+-Stimulated Catecholamine Release from alpha-Toxin Permeabilized PC12 Cells

    Get PDF
    Two possible cellular pathways of catecholamines from the chromaffin vesicles of PC 12 cells to the surrounding medium are explored in this study. The direct one circumventing the cytoplasm can be activated in a-toxin-permeabilized cells with micromolar levels of free Ca2+. Catecholamine metabolites formed in the cytoplasm (i.e., 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylethanol) are neither formed nor released from the cells under these conditions. However, when vesicular catecholamines were discharged into the cytoplasm by addition of the ionophore nigericin, such metabolites are formed and released into the medium independent of Ca2+. Both types of experiments provide direct evidence for the operation of Ca2+-induced exocytosis of dopamine and noradrenaline in permeabilized PC12 cells. The Ca2+ dependence of dopamine or noradrenaline release, as measured by the determination of the endogenous catecholamines using the high-performance liquid chromatography technique, exhibits two different phases. One is already activated below 1 pM free Ca2+ and plateaus at 1-5 pM free Ca2+, while a second occurs in the presence of larger amounts of free Ca2+ (10-100 pM). Ca2+-induced catecholamine release from the permeabilized cells can be modulated in different ways: It is enhanced by the phorbol ester 12-0-tetradecanoylphorbol 13-acetate and the diacylglycerol 1 -oleyl-2-acetylglycerol provided Mg*+/ATP is present, and it is inhibited by guanosine 5’-0-(3-thiotriphosphate). The latter effect is abolished by pretreatment of the cells with pertussis toxin but not by cholera toxin. Thus, it appears that Ca2+-induced exocytosis can be modulated via the protein kinase C system, as well as via GTP binding proteins

    Cellular distribution and amount of chromogranin A in bovine endocrine pancreas

    Get PDF
    We determined the cellular distribution and the amount of chromogranin A in endocrine cells of bovine pancreas using a polyclonal antibody against bovine adrenomedullary chromogranin A. The relative amounts of chromogranin A in the different cells of the endocrine pancreas were determined by computer-assisted analyses of the optical densities of the immunoreactivities in the stained sections. More than 80% of the immunoreactive chromogranin A was located in the pancreatic B-cells. In immunoblots of acid tissue extracts, only one chromogranin A band (MW 74 KD) was observed. Quantification of the immunoblots revealed that 3 micrograms of chromogranin A and 918 micrograms of insulin were present per gram pancreas (wet weight), equivalent to a molar ratio of 460 mumol chromogranin A per mol insulin

    Chromogranin A in neurons of the rat cerebellum and spinal cord: quantification and sites of expression

    Get PDF
    Chromogranin A (CGA) is an abundant protein of dense-cored secretory vesicles in endocrine and neuronal cells. The present study, for the first time, compares CGA of neurons of the central nervous system with the CGA of adrenal origin. By S1 nucleus protection assay, we found that the 3' part of the CGA mRNA between exons 5-8 of the cerebellum and the spinal cord of the rat is homologous to that of the adrenal. In situ hybridization histochemistry revealed that CGA mRNA in the cerebellar cortex is present in cell bodies of Purkinje cells and in neurons of the deep cerebellar nuclei. The perikarya of these cells also exhibit CGA-like immunoreactivity. CGA mRNA and CGA-like immunoreactivity are also present in the motoneurons of the ventral, lateral, and dorsal horns of the rat spinal cord. The amounts of CGA, as determined by radioimmunoassay in cerebellum and spinal cord, were about one tenth of the amounts detected in the adrenal, adenohypophysis, or the olfactory bulb. The sites of CGA expression suggest that CGA may be involved in signal transduction in the motor system

    Chromogranin A in the pancreatic islet

    Get PDF
    Chromogranin A (CGA) is the major soluble protein within secretory vesicles of chromaffin cells. A polyclonal antiserum was raised against bovine CGA and characterized in two-dimensional immunoblots. Cellular and subcellular distribution of CGA in bovine pancreatic islet was investigated by immunocytochemistry. At the light microscopic level, CGA-like immunoreactivity was found in the same cells that react with antibodies against insulin, glucagon, and somatostatin. A minority of cells containing pancreatic polypeptide also showed faint immunostaining. At the ultrastructural level (protein A-gold technique), CGA-like immunoreactivity was confined exclusively to the secretory vesicles. Whereas the hormones were localized mainly in the central part of the secretory vesicles, CGA was present predominantly in the periphery. These findings indicate that a CGA-like protein is a regular constituent of the matrix of secretory vesicles in pancreatic endocrine cells

    Expression of the neural cell adhesion molecule NCAM in endocrine cells

    Get PDF
    We examined the expression of the neural cell adhesion molecule NCAM in a number of endocrine tissues of adult rat and in an endocrine tumor cell line. NCAM was found by immunoelectron microscopy to be present on the surface of all endocrine cells in the three lobes of the hypophysis, although staining was relatively less intense in the intermediate lobe, and in pancreatic islets. Pituicytes, hypophyseal glial cells, were also labeled for NCAM. A rat insulinoma cell line (RIN A2) also expressed NCAM as judged by immunocytochemistry. Analysis of NCAM antigenic determinants (Mr 180, 140, and 120 KD) revealed large variations in the relative proportions of NCAM polypeptides present in the different tissues. Although all tissues and cell lines expressed NCAM-140, NCAM-180 was not detected in the adenohypophysis, pancreas, or adrenal medulla, and NCAM-120 was found in none of the endocrine tissues or cell lines except at low levels in the neurohypophysis. The tumor cell line expressed significant levels of NCAM-180, which was most abundant in the neurohypophysis. These results show that NCAM expression appears to be a general property of endocrine cells, although the antigenic composition differs markedly from that in brain tissue. These data are discussed with regard to the embryological origins of the different endocrine tissues, and possible functional implications are suggested

    Presence and localization of a 30-kDa basic fibroblast growth factor-like protein in rodent testes

    Get PDF
    We have used a recently characterized rabbit antiserum against basic fibroblast growth factor (bFGF), which recognizes various forms of bFGF, to examine the presence and localization of bFGF in the testes of adult rats and mice and the 5-day-old rat. In Western blots of testicular homogenates of adult rats and mice and immature rats, immunoreactive single bands at approximately 30 kDa were detected. Immunocytochemistry revealed specific staining restricted to the tubular compartment. In 5-day-old rat testes, prespermatogonia were immunoreactive. The cytoplasm of pachytene spermatocytes was heavily stained in the adult testes of both species. Staining of these cells became evident around stage IV/V, was prominent in stage VII through IX and declined about stage XII/XIII (rat) or X-XI (mouse). Staining was seen in type A spermatogonia and in elongating spermatids in their cytoplasmatic lobes and along their flagellae. Sertoli cells were unstained. We propose that the pluripotential growth factor bFGF could be involved in the regulation of germ cell proliferation and differentiation in the adult and immature testis

    NCAM expression in endocrine cells

    Get PDF

    Effect of oxytocin on free intracellular Ca2+ levels and progesterone release by human granulosa-lutein cells

    Get PDF
    Oxytocin and its receptor are found in the corpus luteum in a variety of species, including the human. In the present study we used fura-2 microfluorimetry to investigate whether activation of the oxytocin receptor of cultured human granulosa-lutein cells causes intracellular calcium (Ca2+) signals and affects progesterone release. Although after 1 day in culture, cells were not responsive to oxytocin, the number of responsive cells increased steadily during the first 3 days in culture, reaching a maximum on days 4 and 5 (59-66%) and then declined again until day 8. Effective oxytocin concentrations were apparently independent of the culture day, and concentrations as low as 10 nmol/L increased intracellular free Ca2+ levels from 70-140 nmol/L (basal levels) to maximal peak levels of 800 nmol/L. The oxytocin-induced Ca2+ signal was not affected by removal of extracellular Ca2+ with EGTA. Moreover, depletion of intracellular Ca2+ stores by ionomycin treatment rendered the cells unresponsive to oxytocin, pointing also at the intracellular source of the oxytocin-inducible Ca2+ signal. Interestingly, after one single stimulation with oxytocin, cells became refractory to additional stimuli, and only extremely high concentrations of oxytocin induced a second increase in intracellular free Ca2+. To examine the possible effects of oxytocin on progesterone release by cultured cells, we incubated cells on culture day 2 (20% responsive cells in the fura measurements) and culture day 5 (66% responsive cells in the fura measurements) for 24 h with oxytocin (10 nmol/L) and hCG (10,000 IU/L). Although hCG significantly stimulated progesterone release, oxytocin alone was without a stimulatory effect on either day. However, a significant augmentation of the effect of hCG on progesterone release was found in incubations of cells on day 5. Interestingly, the effects of hCG also included stimulation of oxytocin release by cultured granulosa-lutein cells into the culture medium, as determined by RIA. In summary, our data indicate the presence of a functional oxytocin receptor on human granulosa-lutein cells that is linked to Ca2+ as a second messenger released from intracellular Ca2+ stores. The number of oxytocin-responsive cells increases during differentiation in culture. Moreover, oxytocin release induced by hCG and a stimulatory effect of oxytocin on the hCG-induced progesterone production during the period of maximal responsiveness of cultured cells were found. We, therefore, propose that oxytocin may have autocrine and/or paracrine functions in human granulosa-lutein cells, including fine-tuning of progesterone release
    • …
    corecore