35 research outputs found

    100th anniversary of the discovery of the human adrenal fetal zone by Stella Starkel and Lesław Węgrzynowski: how far have we come?

    Full text link

    Antigenicity and immunogenicity of recombinant glutamate-rich protein of Plasmodium falciparum expressed in Escherichia coli.

    No full text
    A recombinant Plasmodium falciparum glutamate-rich protein (GLURP) was produced in Escherichia coli as a nearly full-length protein. In order to map immunodominant regions on GLURP, the nonrepetitive amino-terminal region (R0) as well as the central repeat region (R1) and the carboxy-terminal repeat region (R2) were also produced as separate products. All four purified gene products reacted specifically with serum samples from adults living in an area of Liberia where malaria is holoendemic. It appears that the human immune response against GLURP is primarily directed against the R2 region because 94% of the serum samples reacted with this region in an immunoassay. Antibody reactivity against the R0 region was also observed in 75% of the serum samples, while the R1 region showed only weak antibody-binding activity. When the nearly full-length GLURP molecule was adsorbed to Al(OH)3 it was found to be immunogenic in mice. In these experiments, the antibody response was almost exclusively directed against the R2 region. When anti-GLURP sera were obtained from rabbits immunized with the three regions, R0, R1, and R2, respectively, they recognized in immunoprecipitation experiments authentic GLURP from P. falciparum grown in vitro. These results demonstrate that GLURP produced in E. coli can induce a humoral immune response against GLURP derived from blood-stage parasites

    Immunoglobulin M and G antibody responses to Plasmodium falciparum glutamate-rich protein: correlation with clinical immunity in Gambian children.

    No full text
    The aims of the present study were to describe the age-related immunoglobulin M (IgM) and IgG response to part of a 220-kDa glutamate-rich protein (GLURP) from Plasmodium falciparum and to determine possible correlations of possession of these antibodies with malaria morbidity. IgM and IgG levels were measured with a recombinant fusion protein consisting of the carboxy-terminal 783 amino acids of the GLURP. Samples for the study were obtained during a longitudinal malaria morbidity survey performed in The Gambia; cross-sectional surveys were performed at the beginning of the transmission season in May and in October. Seropositivity rates increased with age to a maximum of 77% for IgM and 95% for IgG in adults. High prevalences of seropositivity were associated with certain human leukocyte antigen class II alleles (DRw8, DR9, DR7, DR4, DQw7, and DQw2) or haplotypes. The relationship between anti-GLURP489-1271 antibodies and clinical immunity is not clear; asymptomatically infected children aged 5 to 8 years had significantly higher levels of IgG than clinically ill children of the same age, suggesting that antibodies to the carboxy-terminal part of the GLURP may contribute to immunity to P. falciparum. However, this was not significant for younger children
    corecore