517 research outputs found
Magic number 7 2 in networks of threshold dynamics
Information processing by random feed-forward networks consisting of units
with sigmoidal input-output response is studied by focusing on the dependence
of its outputs on the number of parallel paths M. It is found that the system
leads to a combination of on/off outputs when , while for , chaotic dynamics arises, resulting in a continuous distribution of
outputs. This universality of the critical number is explained by
combinatorial explosion, i.e., dominance of factorial over exponential
increase. Relevance of the result to the psychological magic number
is briefly discussed.Comment: 6 pages, 5 figure
Dedifferentiated early postnatal lung myofibroblasts redifferentiate in adult disease
Alveolarization ensures sufficient lung surface area for gas exchange, and during bulk alveolarization in mice (postnatal day [P] 4.5–14.5), alpha-smooth muscle actin (SMA)+ myofibroblasts accumulate, secrete elastin, and lay down alveolar septum. Herein, we delineate the dynamics of the lineage of early postnatal SMA+ myofibroblasts during and after bulk alveolarization and in response to lung injury. SMA+ lung myofibroblasts first appear at ∼ P2.5 and proliferate robustly. Lineage tracing shows that, at P14.5 and over the next few days, the vast majority of SMA+ myofibroblasts downregulate smooth muscle cell markers and undergo apoptosis. Of note, ∼8% of these dedifferentiated cells and another ∼1% of SMA+ myofibroblasts persist to adulthood. Single cell RNA sequencing analysis of the persistent SMA− cells and SMA+ myofibroblasts in the adult lung reveals distinct gene expression profiles. For instance, dedifferentiated SMA− cells exhibit higher levels of tissue remodeling genes. Most interestingly, these dedifferentiated early postnatal myofibroblasts re-express SMA upon exposure of the adult lung to hypoxia or the pro-fibrotic drug bleomycin. However, unlike during alveolarization, these cells that re-express SMA do not proliferate with hypoxia. In sum, dedifferentiated early postnatal myofibroblasts are a previously undescribed cell type in the adult lung and redifferentiate in response to injury
Recommended from our members
High-Throughput Drug Screening Identifies a Potent Wnt Inhibitor that Promotes Airway Basal Stem Cell Homeostasis.
Mechanisms underpinning airway epithelial homeostatic maintenance and ways to prevent its dysregulation remain elusive. Herein, we identify that β-catenin phosphorylated at Y489 (p-β-cateninY489) emerges during human squamous lung cancer progression. This led us to develop a model of airway basal stem cell (ABSC) hyperproliferation by driving Wnt/β-catenin signaling, resulting in a morphology that resembles premalignant lesions and loss of ciliated cell differentiation. To identify small molecules that could reverse this process, we performed a high-throughput drug screen for inhibitors of Wnt/β-catenin signaling. Our studies unveil Wnt inhibitor compound 1 (WIC1), which suppresses T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) activity, reduces ABSC proliferation, induces ciliated cell differentiation, and decreases nuclear p-β-cateninY489. Collectively, our work elucidates a dysregulated Wnt/p-β-cateninY489 axis in lung premalignancy that can be modeled in vitro and identifies a Wnt/β-catenin inhibitor that promotes airway homeostasis. WIC1 may therefore serve as a tool compound in regenerative medicine studies with implications for restoring normal airway homeostasis after injury
A variational approach to the stochastic aspects of cellular signal transduction
Cellular signaling networks have evolved to cope with intrinsic fluctuations,
coming from the small numbers of constituents, and the environmental noise.
Stochastic chemical kinetics equations govern the way biochemical networks
process noisy signals. The essential difficulty associated with the master
equation approach to solving the stochastic chemical kinetics problem is the
enormous number of ordinary differential equations involved. In this work, we
show how to achieve tremendous reduction in the dimensionality of specific
reaction cascade dynamics by solving variationally an equivalent quantum field
theoretic formulation of stochastic chemical kinetics. The present formulation
avoids cumbersome commutator computations in the derivation of evolution
equations, making more transparent the physical significance of the variational
method. We propose novel time-dependent basis functions which work well over a
wide range of rate parameters. We apply the new basis functions to describe
stochastic signaling in several enzymatic cascades and compare the results so
obtained with those from alternative solution techniques. The variational
ansatz gives probability distributions that agree well with the exact ones,
even when fluctuations are large and discreteness and nonlinearity are
important. A numerical implementation of our technique is many orders of
magnitude more efficient computationally compared with the traditional Monte
Carlo simulation algorithms or the Langevin simulations.Comment: 15 pages, 11 figure
Recommended from our members
Modeling Progressive Fibrosis with Pluripotent Stem Cells Identifies an Anti-fibrotic Small Molecule.
Progressive organ fibrosis accounts for one-third of all deaths worldwide, yet preclinical models that mimic the complex, progressive nature of the disease are lacking, and hence, there are no curative therapies. Progressive fibrosis across organs shares common cellular and molecular pathways involving chronic injury, inflammation, and aberrant repair resulting in deposition of extracellular matrix, organ remodeling, and ultimately organ failure. We describe the generation and characterization of an in vitro progressive fibrosis model that uses cell types derived from induced pluripotent stem cells. Our model produces endogenous activated transforming growth factor β (TGF-β) and contains activated fibroblastic aggregates that progressively increase in size and stiffness with activation of known fibrotic molecular and cellular changes. We used this model as a phenotypic drug discovery platform for modulators of fibrosis. We validated this platform by identifying a compound that promotes resolution of fibrosis in in vivo and ex vivo models of ocular and lung fibrosis
F8 haplotype and inhibitor risk: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort.
To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Ancestral background, specifically African descent, confers higher risk for development of inhibitory antibodies to factor VIII (FVIII) in haemophilia A. It has been suggested that differences in the distribution of FVIII gene (F8) haplotypes, and mismatch between endogenous F8 haplotypes and those comprising products used for treatment could contribute to risk. Data from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort were used to determine the association between F8 haplotype 3 (H3) vs. haplotypes 1 and 2 (H1 + H2) and inhibitor risk among individuals of genetically determined African descent. Other variables known to affect inhibitor risk including type of F8 mutation and human leucocyte antigen (HLA) were included in the analysis. A second research question regarding risk related to mismatch in endogenous F8 haplotype and recombinant FVIII products used for treatment was addressed. Haplotype 3 was associated with higher inhibitor risk among those genetically identified (N = 49) as of African ancestry, but the association did not remain significant after adjustment for F8 mutation type and the HLA variables. Among subjects of all racial ancestries enrolled in HIGS who reported early use of recombinant products (N = 223), mismatch in endogenous haplotype and the FVIII proteins constituting the products used did not confer greater risk for inhibitor development. Haplotype 3 was not an independent predictor of inhibitor risk. Furthermore, our findings did not support a higher risk of inhibitors in the presence of a haplotype mismatch between the FVIII molecule infused and that of the individual.Baxter BioScience
Frederick National Laboratory for Cancer Research, National Institutes of Health (NIH) HHSN261200800001E
Wyeth
Research Fund at Malmo University Hospital
NIH, National Institute of Child Health and Human Development R01-HD-41224
Bayer
Inspiration Biopharmaceuticals, Inc.
Grifols, Inc.
Baxter
Biogen Idec
Biotest
CSL Behring
Grifols
Inspiration Biopharmaceuticals
NovoNordisk
Octapharma
Swedish Orphan Biovitrum
Wyeth/Pfize
SOM neural network design – a new Simulink library based approach targeting FPGA implementation
The paper presents a method for FPGA implementation of Self-Organizing Map (SOM) artificial neural networks with on-chip learning algorithm. The method aims to build up a specific neural network using generic blocks designed in the MathWorks Simulink environment. The main characteristics of this original solution are: on-chip learning algorithm implementation, high reconfiguration capability and operation under real time constraints. An extended analysis has been carried out on the hardware resources used to implement the whole SOM network, as well as each individual component block
- …