111 research outputs found

    Life Cycle Replacement by Gene Introduction under an Allee Effect in Periodical Cicadas

    Get PDF
    Periodical cicadas (Magicicada spp.) in the USA are divided into three species groups (-decim, -cassini, -decula) of similar but distinct morphology and behavior. Each group contains at least one species with a 17-year life cycle and one with a 13-year cycle; each species is most closely related to one with the other cycle. One explanation for the apparent polyphyly of 13- and 17-year life cycles is that populations switch between the two cycles. Using a numerical model, we test the general feasibility of life cycle switching by the introduction of alleles for one cycle into populations of the other cycle. Our results suggest that fitness reductions at low population densities of mating individuals (the Allee effect) could play a role in life cycle switching. In our model, if the 13-year cycle is genetically dominant, a 17-year cycle population will switch to a 13-year cycle given the introduction of a few 13-year cycle alleles under a moderate Allee effect. We also show that under a weak Allee effect, different year-classes (“broods”) with 17-year life cycles can be generated. Remarkably, the outcomes of our models depend only on the dominance relationships of the cycle alleles, irrespective of any fitness advantages

    National records of 3000 European bee and hoverfly species: A contribution to pollinator conservation

    Get PDF
    Pollinators play a crucial role in ecosystems globally, ensuring the seed production of most flowering plants. They are threatened by global changes and knowledge of their distribution at the national and continental levels is needed to implement efficient conservation actions, but this knowledge is still fragmented and/or difficult to access. As a step forward, we provide an updated list of around 3000 European bee and hoverfly species, reflecting their current distributional status at the national level (in the form of present, absent, regionally extinct, possibly extinct or non-native). This work was attainable by incorporating both published and unpublished data, as well as knowledge from a large set of taxonomists and ecologists in both groups. After providing the first National species lists for bees and hoverflies for many countries, we examine the current distributional patterns of these species and designate the countries with highest levels of species richness. We also show that many species are recorded in a single European country, highlighting the importance of articulating European and national conservation strategies. Finally, we discuss how the data provided here can be combined with future trait and Red List data to implement research that will further advance pollinator conservation

    It’s Not a Bug, It’s a Feature: Functional Materials in Insects

    Full text link
    Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect‐inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem‐solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.Insects have evolved manifold optimized solutions to everyday problems. The diversity and precision of their hierarchical material adaptations often outsmart and outperform current man‐made approaches. These materials hence provide an excellent basis for the inspiration of new technological approaches by taking design cues from nature’s solutions.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143760/1/adma201705322.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143760/2/adma201705322_am.pd

    An UV-visual pigment in insects

    No full text

    Tympanoblissus ecuatorianus Dellapé & Minghetti, gen. et sp. nov, a new apterous genus of chinch bug (Hemiptera: Blissidae) from Ecuador: the only known blissid with an abdominal mechanism for sound production

    No full text
    Tympanoblissus ecuatorianus Dellapé & Minghetti, gen. et sp. nov. from the Amazon slope of the Eastern Andean Cordillera in southern Ecuador is described. This constitutes the second apterous genus known in the family Blissidae and the first with a tymbal-like mechanism of sound production. The tiny males hide in bamboo branches where they produce a faint drumming sound. The observed vertical vibration of the abdomen and the fused first two tergites folding on both sides of the midline are consistent with the presence of a tymbal-like organ involving the first abdominal segments. Diagnoses, descriptions and illustrations of adult males and other characters, including the genitalia, as well as oscillograms of the acoustic signal are provided.Fil: Minghetti, Eugenia. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Braun, Holger. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología; ArgentinaFil: Matt, Felix. Philipps-Universität Marburg; AlemaniaFil: Dellapé, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología; Argentin
    corecore