1,101 research outputs found
Dependence of ground state energy of classical n-vector spins on n
We study the ground state energy E_G(n) of N classical n-vector spins with
the hamiltonian H = - \sum_{i>j} J_ij S_i.S_j where S_i and S_j are n-vectors
and the coupling constants J_ij are arbitrary. We prove that E_G(n) is
independent of n for all n > n_{max}(N) = floor((sqrt(8N+1)-1) / 2) . We show
that this bound is the best possible. We also derive an upper bound for E_G(m)
in terms of E_G(n), for m<n. We obtain an upper bound on the frustration in the
system, as measured by F(n), which is defined to be (\sum_{i>j} |J_ij| +
E_G(n)) / (\sum_{i>j} |J_ij|). We describe a procedure for constructing a set
of J_ij's such that an arbitrary given state, {S_i}, is the ground state.Comment: 6 pages, 2 figures, submitted to Physical Review
Hypergraphic LP Relaxations for Steiner Trees
We investigate hypergraphic LP relaxations for the Steiner tree problem,
primarily the partition LP relaxation introduced by Koenemann et al. [Math.
Programming, 2009]. Specifically, we are interested in proving upper bounds on
the integrality gap of this LP, and studying its relation to other linear
relaxations. Our results are the following. Structural results: We extend the
technique of uncrossing, usually applied to families of sets, to families of
partitions. As a consequence we show that any basic feasible solution to the
partition LP formulation has sparse support. Although the number of variables
could be exponential, the number of positive variables is at most the number of
terminals. Relations with other relaxations: We show the equivalence of the
partition LP relaxation with other known hypergraphic relaxations. We also show
that these hypergraphic relaxations are equivalent to the well studied
bidirected cut relaxation, if the instance is quasibipartite. Integrality gap
upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap
of these hypergraph relaxations in general graphs. In the special case of
uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~
1.216. By our equivalence theorem, the latter result implies an improved upper
bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010
Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities
Quantum theory imposes a strict limit on the strength of non-local
correlations. It only allows for a violation of the CHSH inequality up to the
value 2 sqrt(2), known as Tsirelson's bound. In this note, we consider
generalized CHSH inequalities based on many measurement settings with two
possible measurement outcomes each. We demonstrate how to prove Tsirelson
bounds for any such generalized CHSH inequality using semidefinite programming.
As an example, we show that for any shared entangled state and observables
X_1,...,X_n and Y_1,...,Y_n with eigenvalues +/- 1 we have | + <X_2
Y_1> + + + ... + - | <= 2 n
cos(pi/(2n)). It is well known that there exist observables such that equality
can be achieved. However, we show that these are indeed optimal. Our approach
can easily be generalized to other inequalities for such observables.Comment: 9 pages, LateX, V2: Updated reference [3]. To appear in Physical
Review
A hybrid constraint programming and semidefinite programming approach for the stable set problem
This work presents a hybrid approach to solve the maximum stable set problem,
using constraint and semidefinite programming. The approach consists of two
steps: subproblem generation and subproblem solution. First we rank the
variable domain values, based on the solution of a semidefinite relaxation.
Using this ranking, we generate the most promising subproblems first, by
exploring a search tree using a limited discrepancy strategy. Then the
subproblems are being solved using a constraint programming solver. To
strengthen the semidefinite relaxation, we propose to infer additional
constraints from the discrepancy structure. Computational results show that the
semidefinite relaxation is very informative, since solutions of good quality
are found in the first subproblems, or optimality is proven immediately.Comment: 14 page
Improved Algorithm for Degree Bounded Survivable Network Design Problem
We consider the Degree-Bounded Survivable Network Design Problem: the
objective is to find a minimum cost subgraph satisfying the given connectivity
requirements as well as the degree bounds on the vertices. If we denote the
upper bound on the degree of a vertex v by b(v), then we present an algorithm
that finds a solution whose cost is at most twice the cost of the optimal
solution while the degree of a degree constrained vertex v is at most 2b(v) +
2. This improves upon the results of Lau and Singh and that of Lau, Naor,
Salavatipour and Singh
Approximation Algorithms for Connected Maximum Cut and Related Problems
An instance of the Connected Maximum Cut problem consists of an undirected
graph G = (V, E) and the goal is to find a subset of vertices S V
that maximizes the number of edges in the cut \delta(S) such that the induced
graph G[S] is connected. We present the first non-trivial \Omega(1/log n)
approximation algorithm for the connected maximum cut problem in general graphs
using novel techniques. We then extend our algorithm to an edge weighted case
and obtain a poly-logarithmic approximation algorithm. Interestingly, in stark
contrast to the classical max-cut problem, we show that the connected maximum
cut problem remains NP-hard even on unweighted, planar graphs. On the positive
side, we obtain a polynomial time approximation scheme for the connected
maximum cut problem on planar graphs and more generally on graphs with bounded
genus.Comment: 17 pages, Conference version to appear in ESA 201
Application of semidefinite programming to maximize the spectral gap produced by node removal
The smallest positive eigenvalue of the Laplacian of a network is called the
spectral gap and characterizes various dynamics on networks. We propose
mathematical programming methods to maximize the spectral gap of a given
network by removing a fixed number of nodes. We formulate relaxed versions of
the original problem using semidefinite programming and apply them to example
networks.Comment: 1 figure. Short paper presented in CompleNet, Berlin, March 13-15
(2013
On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games
In \emph{bandwidth allocation games} (BAGs), the strategy of a player
consists of various demands on different resources. The player's utility is at
most the sum of these demands, provided they are fully satisfied. Every
resource has a limited capacity and if it is exceeded by the total demand, it
has to be split between the players. Since these games generally do not have
pure Nash equilibria, we consider approximate pure Nash equilibria, in which no
player can improve her utility by more than some fixed factor through
unilateral strategy changes. There is a threshold (where
is a parameter that limits the demand of each player on a specific
resource) such that -approximate pure Nash equilibria always exist for
, but not for . We give both
upper and lower bounds on this threshold and show that the
corresponding decision problem is -hard. We also show that the
-approximate price of anarchy for BAGs is . For a restricted
version of the game, where demands of players only differ slightly from each
other (e.g. symmetric games), we show that approximate Nash equilibria can be
reached (and thus also be computed) in polynomial time using the best-response
dynamic. Finally, we show that a broader class of utility-maximization games
(which includes BAGs) converges quickly towards states whose social welfare is
close to the optimum
On the Maximum Crossing Number
Research about crossings is typically about minimization. In this paper, we
consider \emph{maximizing} the number of crossings over all possible ways to
draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009]
conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a
drawing with vertices in convex position, that maximizes the number of edge
crossings. We disprove this conjecture by constructing a planar graph on twelve
vertices that allows a non-convex drawing with more crossings than any convex
one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the
maximum number of crossings of a geometric graph and that the weighted
geometric case is NP-hard to approximate. We strengthen these results by
showing hardness of approximation even for the unweighted geometric case and
prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure
Incremental Medians via Online Bidding
In the k-median problem we are given sets of facilities and customers, and
distances between them. For a given set F of facilities, the cost of serving a
customer u is the minimum distance between u and a facility in F. The goal is
to find a set F of k facilities that minimizes the sum, over all customers, of
their service costs.
Following Mettu and Plaxton, we study the incremental medians problem, where
k is not known in advance, and the algorithm produces a nested sequence of
facility sets where the kth set has size k. The algorithm is c-cost-competitive
if the cost of each set is at most c times the cost of the optimum set of size
k. We give improved incremental algorithms for the metric version: an
8-cost-competitive deterministic algorithm, a 2e ~ 5.44-cost-competitive
randomized algorithm, a (24+epsilon)-cost-competitive, poly-time deterministic
algorithm, and a (6e+epsilon ~ .31)-cost-competitive, poly-time randomized
algorithm.
The algorithm is s-size-competitive if the cost of the kth set is at most the
minimum cost of any set of size k, and has size at most s k. The optimal
size-competitive ratios for this problem are 4 (deterministic) and e
(randomized). We present the first poly-time O(log m)-size-approximation
algorithm for the offline problem and first poly-time O(log m)-size-competitive
algorithm for the incremental problem.
Our proofs reduce incremental medians to the following online bidding
problem: faced with an unknown threshold T, an algorithm submits "bids" until
it submits a bid that is at least the threshold. It pays the sum of all its
bids. We prove that folklore algorithms for online bidding are optimally
competitive.Comment: conference version appeared in LATIN 2006 as "Oblivious Medians via
Online Bidding
- …
