55 research outputs found

    Modeling carbon black reinforcement in rubber compounds

    Get PDF
    One of the advocated reinforcement mechanisms is the formation by the filler of a network interpenetrating the polymer network. The deformation and reformation of the filler network allows the explanation of low strain dynamic physical properties of the composite. The present model relies on a statistical study of a collection of elementary mechanical systems, This leads to a mathematical approach of the complex modulus G* = G' + iG". The storage and loss modulus (G' and G", respectively), are expressed in the form of two integrals capable of modeling their Variation with respect to strain

    Interpol and the Emergence of Global Policing

    Get PDF
    This chapter examines global policing as it takes shape through the work of Interpol, the International Criminal Police Organization. Global policing emerges in the legal, political and technological amalgam through which transnational police cooperation is carried out, and includes the police practices inflected and made possible by this phenomenon. Interpol’s role is predominantly in the circulation of information, through which it enters into relationships and provides services that affect aspects of governance, from the local to national, regional and global. The chapter describes this assemblage as a noteworthy experiment in developing what McKeon called a frame for common action. Drawing on Interpol publications, news stories, interviews with staff, and fieldwork at the General Secretariat in Lyon, France, the history, institutional structure, and daily practices are described. Three cases are analyzed, concerning Red Notices, national sovereignty, and terrorism, in order to explore some of the problems arising in Interpol’s political and technical operating arrangements. In conclusion, international and global policing are compared schematically, together with Interpol’s attempts to give institutional and procedural direction to the still-evolving form of global policing

    25.1 High Efficiency Monolithic Perovskite Silicon Tandem Solar Cell with a High Bandgap Perovskite Absorber

    Get PDF
    Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 amp; 8201;eV in planar p i n tandem configuration. A methylammonium free FA0.75Cs0.25Pb I0.8Br0.2 3 perovskite with high Cs content is investigated for improved stability. A 10 molarity increase to 1.1 amp; 8201;m of the perovskite precursor solution results in amp; 8776;75 amp; 8201;nm thicker absorber layers and 0.7 amp; 8201;mA amp; 8201;cm amp; 8722;2 higher short circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80 and up to 25.1 certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3 absolute over 5 amp; 8201;months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30 tandem efficiency in the near futur
    • …
    corecore