6,143 research outputs found

    Initial states and decoherence of histories

    Full text link
    We study decoherence properties of arbitrarily long histories constructed from a fixed projective partition of a finite dimensional Hilbert space. We show that decoherence of such histories for all initial states that are naturally induced by the projective partition implies decoherence for arbitrary initial states. In addition we generalize the simple necessary decoherence condition [Scherer et al., Phys. Lett. A (2004)] for such histories to the case of arbitrary coarse-graining.Comment: 10 page

    Causality in Time-Neutral Cosmologies

    Get PDF
    Gell-Mann and Hartle (GMH) have recently considered time-neutral cosmological models in which the initial and final conditions are independently specified, and several authors have investigated experimental tests of such models. We point out here that GMH time-neutral models can allow superluminal signalling, in the sense that it can be possible for observers in those cosmologies, by detecting and exploiting regularities in the final state, to construct devices which send and receive signals between space-like separated points. In suitable cosmologies, any single superluminal message can be transmitted with probability arbitrarily close to one by the use of redundant signals. However, the outcome probabilities of quantum measurements generally depend on precisely which past {\it and future} measurements take place. As the transmission of any signal relies on quantum measurements, its transmission probability is similarly context-dependent. As a result, the standard superluminal signalling paradoxes do not apply. Despite their unusual features, the models are internally consistent. These results illustrate an interesting conceptual point. The standard view of Minkowski causality is not an absolutely indispensable part of the mathematical formalism of relativistic quantum theory. It is contingent on the empirical observation that naturally occurring ensembles can be naturally pre-selected but not post-selected.Comment: 5 pages, RevTeX. Published version -- minor typos correcte

    Quasiclassical Coarse Graining and Thermodynamic Entropy

    Get PDF
    Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions'' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a ``quasiclassical realm'' this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.Comment: 17 pages, 0 figures, revtex4, Dedicated to Rafael Sorkin on his 60th birthday, minor correction

    Path Integral Solution by Sum Over Perturbation Series

    Get PDF
    A method for calculating the relativistic path integral solution via sum over perturbation series is given. As an application the exact path integral solution of the relativistic Aharonov-Bohm-Coulomb system is obtained by the method. Different from the earlier treatment based on the space-time transformation and infinite multiple-valued trasformation of Kustaanheimo-Stiefel in order to perform path integral, the method developed in this contribution involves only the explicit form of a simple Green's function and an explicit path integral is avoided.Comment: 13 pages, ReVTeX, no figure

    Recent Developments in Fisheries Science and Their Prospects for Improving Fisheries Contributions to Food Security

    Get PDF
    Marine reserves, areas permanently closed to all fishing, are frequently proposed as a tool for managing fisheries. Fishery benefits claimed for reserves include increases in spawning stock size, animal body size, and reproductive output of exploited species. Reserves are predicted to augment catches through export of offspring to fishing grounds, and spillover of juveniles and adults from reserves to fisheries. Protection of stocks and development of extended age structures of populations in reserves are argued to offer insurance against environmental variability and management failure. Models also suggest reserves will reduce year-to-year variability in catches, and offer greater simplicity of management and enforcement. Reserves are predicted to lead to habitat recovery from fishing disturbance which can also enhance benefits to fisheries. Extensive field research confirms many of these predictions. Reserves worldwide have led to increases in abundance, body size, biomass and reproductive output of exploited species. Such measures often increase many times over, sometimes by an order of magnitude or more. Population build up is usually rapid with effects detectable within 2-3 years of protection. Increases are often sustained over extended periods, particularly for longer-lived species and for measures of habitat recovery. Reserves have benefitted species from a wide taxonomic spectrum that covers most economically important taxa, including many species of fish, crustaceans, mollusks and echinoderms. Encouraged by these results, many countries and states have embarked upon initiatives to establish networks of marine reserves. However, reserves remain highly controversial among fishers and fishing industry bodies who argue that fishery benefits remain unproven. In the last three years there has been rapid growth in the number of cases where fisheries have been shown to benefit from reserves. In this report, we critically analyze this body of evidence, drawing upon studies of reserves and fishery closures. Fishery managers have long used fishery closures, areas temporarily closed to fishing for one or more species or to specific fishing gears. They are employed to help rebuild depleted stocks, reduce gear conflicts, protect vulnerable life stages of exploited species or protect sensitive habitats from damaging gears. Such areas can tell us much about the potential effects of marine reserves. Fishery benefits from reserves and fishery closures typically develop quickly, in most cases within five years of their creation. Perhaps the most persuasive evidence of fishery effects of reserves comes from changing fishing patterns. In most places where well-respected reserves or fishery closures exist, fishers tend to move their fishing activities closer to their boundaries. Fishing-the-line, as it is called, allows fishers to benefit from spillover of animals from reserves to fishing grounds. There are now well-documented cases of spillover from more than a dozen countries and including a wide range of species. It is more technically demanding to prove fishery enhancement through export of offspring on ocean currents. Existing reserves are generally small, making it hard to detect increased recruitment to fisheries at a regional scale. However, there are now several cases in which export of eggs and larvae have been confirmed, including dramatic enhancement of scallop fisheries in Georges Bank and clam fisheries in Fiji. Small reserves have worked well and repeatedly produce local benefits. However, regional fisheries enhancement will require more extensive networks of reserves. Some of the most convincing success stories come from places in which between 10 and 35% of fishing grounds have been protected. In several cases there is evidence that yields with reserves have risen to higher levels than prior to protection, despite a reduction in the area of fishing grounds. In other cases, smaller reserves have stabilized catches from intensively exploited fisheries or slowed existing rates of decline. We describe experiences that prove that success of marine reserves is not contingent on habitat type, geographical location, the kind of fishery involved, or the technological sophistication of management. Reserve benefits are not restricted to habitats like coral reefs, or to artisanal fisheries, as some critics claim. Fishery benefits have been demonstrated from reserves established in tropical, warm- and cold-temperate waters, and in many habitats, including coral reefs, rocky reefs, kelp forests, seagrass beds, mangroves, estuaries, soft sediments, continental shelves and deep sea. Reserves and fishery closures have worked well for a wide range of fisheries, spanning recreational fisheries, artisanal fisheries like those of coral reefs, through small-scale nearshore fisheries for species like lobsters, up to industrial-scale fisheries for animals like flatfish and scallops. They have worked across a similarly broad spectrum of management sophistication, from self-policing by committed fishers, through warden patrols to satellite monitoring of distant fishing activities. We now have strong evidence that with the support of local communities, marine reserves offer a highly effective management tool. However, reserves will only rarely be adequate as a stand-alone management approach, although we describe cases where they have worked in the absence of other measures. They will be most effective when implemented as part of a package of limits on fishing effort and protect exploited species and their habitats

    Enhanced Tau Lepton Signatures at LHC in Constrained Supersymmetric Seesaw

    Full text link
    We discuss the possible enhancement of the tau lepton events at LHC when the left-handed stau doublet becomes light (which can be even lighter than the right-handed stau). This is illustrated in the constrained supersymmetric seesaw model where the slepton doublet mass is suppressed by the effects of a large neutrino Yukawa coupling. We study a few representative parameter sets in the sneutrino coannihilation regions where the tau sneutrino is NLSP and the stau coannihilation regions where the stau is NLSP both of which yield the thermal neutralino LSP abundance determined by WMAP.Comment: 15 pages, 3 figures, references adde

    Quasiclassical Equations of Motion for Nonlinear Brownian Systems

    Get PDF
    Following the formalism of Gell-Mann and Hartle, phenomenological equations of motion are derived from the decoherence functional formalism of quantum mechanics, using a path-integral description. This is done explicitly for the case of a system interacting with a ``bath'' of harmonic oscillators whose individual motions are neglected. The results are compared to the equations derived from the purely classical theory. The case of linear interactions is treated exactly, and nonlinear interactions are compared using classical and quantum perturbation theory.Comment: 24 pages, CALT-68-1848 (RevTeX 2.0 macros

    Verifiable Radiative Seesaw Mechanism of Neutrino Mass and Dark Matter

    Full text link
    A minimal extension of the Standard Model is proposed, where the observed left-handed neutrinos obtain naturally small Majorana masses from a one-loop radiative seesaw mechanism. This model has two candidates (one bosonic and one fermionic) for the dark matter of the Universe. It has a very simple structure and should be verifiable in forthcoming experiments at the Large Hadron Collider.Comment: 8 pages, 1 figur

    Connection Between the Neutrino Seesaw Mechanism and Properties of the Majorana Neutrino Mass Matrix

    Full text link
    If it can be ascertained experimentally that the 3X3 Majorana neutrino mass matrix M_nu has vanishing determinants for one or more of its 2X2 submatrices, it may be interpreted as supporting evidence for the theoretically well-known canonical seesaw mechanism. I show how these two things are connected and offer a realistic M_nu with two zero subdeterminants as an example.Comment: title changed, version to appear in PRD(RC
    • …
    corecore