356 research outputs found

    Neural correlates associated with successful working memory performance in older adults as revealed by spatial ICA

    Get PDF
    To investigate which neural correlates are associated with successful working memory performance, fMRI was recorded in healthy younger and older adults during performance on an n-back task with varying task demands. To identify functional networks supporting working memory processes, we used independent component analysis (ICA) decomposition of the fMRI data. Compared to younger adults, older adults showed a larger neural (BOLD) response in the more complex (2-back) than in the baseline (0-back) task condition, in the ventral lateral prefrontal cortex (VLPFC) and in the right fronto-parietal network (FPN). Our results indicated that a higher BOLD response in the VLPFC was associated with increased performance accuracy in older adults, in the more complex task condition. This 'BOLD-performance' relationship suggests that the neural correlates linked with successful performance in the older adults are related to specific working memory processes present in the complex but not in the baseline task condition [corrected].Furthermore, the selective presence of this relationship in older but not in younger adults suggests that increased neural activity in the VLPFC serves a compensatory role in the aging brain which benefits task performance in the elderly

    Correction: Neural Correlates Associated with Successful Working Memory Performance in Older Adults as Revealed by Spatial ICA

    Get PDF
    There are errors in the fourth and fifth sentences of the Abstract. The correct sentences are: Our results indicated that a higher BOLD response in the VLPFC was associated with increased performance accuracy in older adults, in the more complex task condition. This ‘BOLD-performance’ relationship suggests that the neural correlates linked with successful performance in the older adults are related to specific working memory processes present in the complex but not in the baseline task condition.There are errors in the second and third sentences of the second paragraph of the “Independent component analysis (ICA)” portion of the “fMRI image analysis” subsection of the Materials and Methods. The correct sentences are: The GLM design matrix was based on the task events (onsets), as well as the movement parameters derived from the realignment step and their first derivatives and a high pass filter of 230 seconds, implemented using a discrete cosine transform (DCT) set. The task events were convolved with three basis functions of the hemodynamic response function (HRF): the canonical HRF, its time derivative and its dispersion derivative.There are multiple errors throughout the “Performance and age” section of the Results. The correct text is: Older adults had a mean accuracy cost of.23 (SD = .12) and a mean speed cost of.47 (.19). Younger adults had a mean accuracy cost of.08 (.04) and a mean speed cost of.31 (.18). Coefficients for the main effects of age on accuracy and speed cost were based on the regression model assessing the effects of age and/or BOLD load effect in the VLPFC component. Older adults had a higher accuracy cost (β age = .147, t(74) = 7.08, p < .0005; R2 = .419, F(3,74) = 18.8, p < .0005) and speed cost (β age = .167, t(74) = 4.01, p < .0005; R2 = .215, F(3,74) = 6.5, p < .0005) than younger adults. Additional regression models, performed in each load condition, revealed that older adults had lower accuracy scores in the 2-back load than younger adults (β age = −.129, t(74) = −6.47, p < .0005; R2 = .414, F(3,74) = 16.7, p < .0005). Furthermore, older adults were slower than younger adults in both load conditions (0-back: β age = 115.32, t(74) = 9.83, p < .0005; R2 = .581, F(3,74) = 32.9, p < .0005 and 2-back: β age = 249.01, t(74) = 9.61, p < .0005; R2 = .569, F(3,74) = 31.3, p < .0005; see Table 2).There are multiple errors throughout the “Components of interest: Age and BOLD load effect” section of the Results. The correct text is: The main repeated measure ANOVA on the BOLD load effects observed in the eight ICs associated with working memory processes, showed a general interaction between age and BOLD load effect (F(7,511) = 3.1, p = .007). To identify which of these 8 ICs showed an age-related BOLD load effect, additional post-hoc two sample t-tests were performed. These tests revealed that the difference in BOLD activation between the 2-back and the 0-back load condition was larger for older than younger adults in 3 ICs. Namely, the ICs containing mainly the VLPFC (t(73) = 1.9, p = .061), the right FPN (t(73) = 2.2, p = .035) and the left FPN (t(73) = 4, p < .0005).After identifying these 3 ICs, we subsequently performed a one-sample t-test in younger and older adults, separately. The purpose of these tests was to investigate whether the BOLD activation in each of the 3 selected ICs differed significantly between the 0-back and the 2-back load condition within each age-group. The one-sample t-test was significant in all 3 ICs, for younger (VLPFC: t(37) = 6.5, p< .0005; right FPN: t(37) = 3, p = .005 and left FPN: t(37) = -4.1, p< .0005) and older adults (VLPFC (t(36) = 9.8, p< .0005), the right FPN (t(36) = 6, p< .0005 and the left FPN (t(36) = -1.7, p = .093). For all participants, the BOLD activation in the right FPN and the VLPFC increased with task load. However, the BOLD activation of the left FPN was negatively modulated by the task, as revealed by the negative beta-weights and the positive spatial map of this component (see Fig 2B and Fig 3). In young adults, the BOLD activation in the left FPN became more negative with increasing task demands. To determine whether age modulated the BOLD signal in these 3 ICs of interest in the 0-back, in the 2-back or in both load conditions, subsequent post-hoc independent two sample t-tests were performed. These tests showed that compared to younger adults, older adults had a higher BOLD activation in the VLPFC (t(73) = 3, p = .006) and the right FPN (t(73) = 2.4, p = .020), in the 2-back load condition. In the 0-back load condition, younger and older adults showed similar BOLD activation in the VLPFC and the right FPN. On the other hand, older adults had a more negative BOLD response in the left FPN than younger adults, in the 0-back load condition (t(73) = 4.5, p < .0005). Younger and older adults had comparable BOLD load effect in the other working memory related ICs

    Sum rule for transport in a Luttinger liquid with long range interaction in the presence of an impurity

    Full text link
    We show that the non-linear dc transport in a Luttinger liquid with interaction of finite range in the presence of an impurity is governed by a sum rule which causes the charging energy to vanish.Comment: 5 pages, RevTeX, 1 figure, to be published in Europhysics Letter

    Non-Abelian phases, charge pumping, and quantum computation with Josephson junctions

    Full text link
    Non-Abelian geometric phases can be generated and detected in certain superconducting nanocircuits. Here we consider an example where the holonomies are related to the adiabatic charge dynamics of the Josephson network. We demonstrate that such a device can be applied both for adiabatic charge pumping and as an implementation of a quantum computer.Comment: 11 pages RevTex, 3 figures in eps format, revised versio

    Single-electron transistors in electromagnetic environments

    Full text link
    The current-voltage (I-V) characteristics of single-electron transistors (SETs) have been measured in various electromagnetic environments. Some SETs were biased with one-dimensional arrays of dc superconducting quantum interference devices (SQUIDs). The purpose was to provide the SETs with a magnetic-field-tunable environment in the superconducting state, and a high-impedance environment in the normal state. The comparison of SETs with SQUID arrays and those without arrays in the normal state confirmed that the effective charging energy of SETs in the normal state becomes larger in the high-impedance environment, as expected theoretically. In SETs with SQUID arrays in the superconducting state, as the zero-bias resistance of the SQUID arrays was increased to be much larger than the quantum resistance R_K = h/e^2 = 26 kohm, a sharp Coulomb blockade was induced, and the current modulation by the gate-induced charge was changed from e periodic to 2e periodic at a bias point 0<|V|<2D_0/e, where D_0 is the superconducting energy gap. The author discusses the Coulomb blockade and its dependence on the gate-induced charge in terms of the single Josephson junction with gate-tunable junction capacitance.Comment: 8 pages with 10 embedded figures, RevTeX4, published versio

    Arrays of Josephson junctions in an environment with vanishing impedance

    Full text link
    The Hamiltonian operator for an unbiased array of Josephson junctions with gate voltages is constructed when only Cooper pair tunnelling and charging effects are taken into account. The supercurrent through the system and the pumped current induced by changing the gate voltages periodically are discussed with an emphasis on the inaccuracies in the Cooper pair pumping. Renormalisation of the Hamiltonian operator is used in order to reliably parametrise the effects due to inhomogeneity in the array and non-ideal gating sequences. The relatively simple model yields an explicit, testable prediction based on three experimentally motivated and determinable parameters.Comment: 13 pages, 9 figures, uses RevTeX and epsfig, Revised version, Better readability and some new result

    Tunneling between two Luttinger liquids with long range interaction

    Full text link
    The non linear charge transfer through a tunnel junction between two Luttinger systems is studied for repulsive, finite range interaction between electrons on the same, V_{11}, and on different,V_{12}, sides of the junction. Features of the Coulomb blockade effect are observed if V_{12}=0. We predict a novel interaction induced enhancement of the current if V_{12}>0. When V_{12}=V_{11}, the current is suppressed at small bias, but the ``charging energy'', obtained from the asymptotic behavior at high bias voltage, vanishes.Comment: 4 pages, RevTeX, to be published in Physical Review B (Brief Report

    Light-induced boron-oxygen defect generation in compensated p-type Czochralski silicon

    No full text
    The concentration of boron-oxygen defects generated in compensated p-type Czochralski silicon has been measured via carrier lifetime measurements taken before and after activating the defect with illumination. The rate of formation of these defects was also measured. Both the concentration and the rate were found to depend on the net doping rather than the total boron concentration. These results imply that the additional compensated boron exists in a form that is not able to bond with the oxygen dimers, thus prohibiting the formation of the defect. This could be explained by the presence of boron-phosphorus complexes, as proposed in previous work. Evidence for reduced carrier mobilities in compensated silicon is also presented, which has implications for photoconductance-based carrier lifetime measurements and solar cell performance.D.M. is supported by an Australian Research Council QEII Fellowship, L.J.G. acknowledges SenterNovem for support, and B.L. and J.S. acknowledge the support of the German Academic Exchange Service
    • …
    corecore