56 research outputs found
Ultrasound-guided trans-rectal high-intensity focused ultrasound (HIFU) for advanced cervical cancer ablation is feasible: a case report.
High-intensity focused ultrasound (HIFU) is an ablative treatment undergoing assessment for the treatment of benign and malignant disease. We describe the first reported intracavitary HIFU ablation for recurrent, unresectable and symptomatic cervical cancer.A 38Â year old woman receiving palliative chemotherapy for metastatic cervical adenocarcinoma was offered ablative treatment from an intracavitary trans-rectal HIFU device (SonablateÂź 500). Pre-treatment symptoms included vaginal bleeding and discharge that were sufficient to impede her quality of life. No peri-procedural adverse events occurred. Symptoms resolved completely immediately post-procedure, reappeared at 7Â days, increasing to pre-procedural levels by day 30.This first time experience of intracavitary cervical HIFU suggests that it is feasible for palliation of advanced cervical cancer, with no early evidence of unexpected toxicity. Ethical approval had also been granted for the use of per-vaginal access if appropriate. This route, alone or in combination with the rectal route, may provide increased accessibility in future patients with a redesigned device more suited to trans-vaginal ablations.Intracavitary HIFU is a potentially safe procedure for the treatment of cervical cancer and able to provide symptomatic improvement in the palliative setting
Illusions of SelfâMotion during Magnetic Resonance âGuided Focused Ultrasound Thalamotomy for Tremor
© 2024 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Objective: Brain networks mediating vestibular perception of selfâmotion overlap with those mediating balance. A systematic mapping of vestibular perceptual pathways in the thalamus may reveal new brain modulation targets for improving balance in neurological conditions. Methods: Here, we systematically report how magnetic resonanceâguided focused ultrasound surgery of the nucleus ventralis intermedius of the thalamus commonly evokes transient patientâreported illusions of selfâmotion. In 46 consecutive patients, we linked the descriptions of selfâmotion to sonication power and 3âdimensional (3D) coordinates of sonication targets. Target coordinates were normalized using a standard atlas, and a 3D model of the nucleus ventralis intermedius and adjacent structures was created to link sonication target to the illusion. Results: A total of 63% of patients reported illusions of selfâmotion, which were more likely with increased sonication power and with targets located more inferiorly along the rostrocaudal axis. Higher power and more inferiorly targeted sonications increased the likelihood of experiencing illusions of selfâmotion by 4 and 2 times, respectively (odds ratios = 4.03 for power, 2.098 for location). Interpretation: The phenomenon of magnetic vestibular stimulation is the most plausible explanation for these illusions of selfâmotion. Temporary unilateral modulation of vestibular pathways (via magnetic resonanceâguided focused ultrasound) unveils the central adaptation to the magnetic fieldâinduced peripheral vestibular bias, leading to an explicable illusion of motion. Consequently, systematic mapping of vestibular perceptual pathways via magnetic resonanceâguided focused ultrasound may reveal new intracerebral targets for improving balance in neurological conditions. ANN NEUROL 2024Peer reviewe
Ethnicity and prediction of cardiovascular disease: performance of QRISK2 and Framingham scores in a U.K. tri-ethnic prospective cohort study (SABRE--Southall And Brent REvisited).
OBJECTIVE: To evaluate QRISK2 and Framingham cardiovascular disease (CVD) risk scores in a tri-ethnic U.K. population. DESIGN: Cohort study. SETTING: West London. PARTICIPANTS: Randomly selected from primary care lists. Follow-up data were available for 87% of traced participants, comprising 1866 white Europeans, 1377 South Asians, and 578 African Caribbeans, aged 40-69 years at baseline (1998-1991). MAIN OUTCOME MEASURES: First CVD events: myocardial infarction, coronary revascularisation, angina, transient ischaemic attack or stroke reported by participant, primary care or hospital records or death certificate. RESULTS: During follow-up, 387 CVD events occurred in men (14%) and 78 in women (8%). Both scores underestimated risk in European and South Asian women (ratio of predicted to observed risk: European women: QRISK2: 0.73, Framingham: 0.73; South Asian women: QRISK2: 0.52, Framingham: 0.43). In African Caribbeans, Framingham over-predicted in men and women and QRISK2 over-predicted in women. Framingham classified 28% of participants as high risk, predicting 54% of all such events. QRISK2 classified 19% as high risk, predicting 42% of all such events. Both scores performed poorly in identifying high risk African Caribbeans; QRISK2 and Framingham identified as high risk only 10% and 24% of those who experienced events. CONCLUSIONS: Neither score performed consistently well in all ethnic groups. Further validation of QRISK2 in other multi-ethnic datasets, and better methods for identifying high risk African Caribbeans and South Asian women, are required
MRI-Guided Focused Ultrasound as a New Method of Drug Delivery
Ultrasound-mediated drug delivery under the guidance of an imaging modality can improve drug disposition and achieve site-specific drug delivery. The term focal drug delivery has been introduced to describe the focal targeting of drugs in tissues with the help of imaging and focused ultrasound. Focal drug delivery aims to improve the therapeutic profile of drugs by improving their specificity and their permeation in defined areas. Focused-ultrasound- (FUS-) mediated drug delivery has been applied with various molecules to improve their local distribution in tissues. FUS is applied with the aid of microbubbles to enhance the permeability of bioactive molecules across BBB and improve drug distribution in the brain. Recently, FUS has been utilised in combination with MRI-labelled liposomes that respond to temperature increase. This strategy aims to âactivateâ nanoparticles to release their cargo locally when triggered by hyperthermia induced by FUS. MRI-guided FUS drug delivery provides the opportunity to improve drug bioavailability locally and therefore improve the therapeutic profiles of drugs. This drug delivery strategy can be directly translated to clinic as MRg FUS is a promising clinically therapeutic approach. However, more basic research is required to understand the physiological mechanism of FUS-enhanced drug delivery
Control of a master-slave pneumatic system for teleoperated needle insertion in MRI
This paper presents the control of a pneumatically actuated master-slave system intended for teleoperated needle insertion in the liver under magnetic resonance imaging (MRI) guidance. It addresses the challenge of achieving accurate needle positioning and force feedback to the operator in the case of pneumatic actuation with significant friction. Using time-delay position control as the basis, we investigate force feedback via impedance control and admittance control. For impedance control, we propose a new adaptive friction compensation algorithm that only requires a single tuning parameter. Experiments on a 1-degree of freedom prototype system using silicone rubber phantoms with distinct densities highlight the differences between impedance control and admittance control, and demonstrate superior performance compared with a traditional impedance control scheme
- âŠ