12 research outputs found

    Effects of mycophenolate mofetil on key pattern of coronary restenosis: a cascade of in vitro and ex vivo models

    Get PDF
    BACKGROUND: Mycophenolate mofetil (MMF), the prodrug of mycophenolic acid (MPA), is a rationally designed immunosuppressive drug. The current study investigates the effect of MMF on key pattern of restenosis in a cascade of in vitro and ex vivo models. METHODS: Part I of the study investigated in northern blot and cytoflow studies the effect of MMF (50, 100, 150, 200, 250, and 300 μg/mL) on TNF-α induced expression of intercellular adhesion molecule 1 (ICAM-1) in human coronary endothelial cells (HCAEC) and human coronary medial smooth muscle cells (HCMSMC). Part II of the study applied a human coronary 3D model of leukocyte attack, the 3DLA-model. HCAEC and HCMSMC were cultured on both sides of a polycarbonate filters, mimicking the internal elastic membrane. Leukocyte attack (LA) was carried out by adding human monocytes (MC) on the endothelial side. The effect of MMF (50 μg/mL) on adhesion and chemotaxis (0.5, 1, 2, 3, 4, 6, and 24 h after LA) and the effect on proliferation of co-cultured HCMSMC (24 h after LA) was studied. In part III of the study a porcine coronary organ culture model of restenosis (POC-model) was used. After ex vivo ballooning MMF (50 μg/mL) was added to the cultures for a period of 1, 2, 3, 4, 5, 6, and 7 days. The effect on reactive cell proliferation and neointimal thickening was studied at day 7 and day 28 after ballooning. RESULTS: Expression of ICAM-1 in northern blot and cytoflow studies was neither clearly inhibited nor stimulated after administration of MMF in the clinical relevant concentration of 50 μg/mL. In the 3DLA-model 50 μg/mL of MMF caused a significant antiproliferative effect (p < 0.001) in co-cultured HCMSMC but had no effect on MC-adhesion and MC-chemotaxis. In the ex vivo POC-model neighter reactive cell proliferation at day 7 nor neointimal hyperplasia at day 28 were significantly inhibited by MMF (50 μg/mL). CONCLUSION: Thus, the data demonstrate a significant antiproliferative effect of clinical relevant levels of MMF (50 μg/mL) in the 3DLA-model. The antiproliferative effect was a direct antiproliferative effect that was not triggered via reduced expression of ICAM-1 or via an inhibition of MC-adhesion and chemotaxis. Probably due to technical limitations (as e.g. the missing of perfusion) the antiproliferative effect of MMF (50 μg/mL) could not be reproduced in the coronary organ culture model. A cascade of focused in vitro and ex vivo models may help to gather informations on drug effects before large experimental studies are initiated

    Parametric studies on droplet generation reproducibility for applications with biological relevant fluids

    No full text
    Although the great potential of droplet based microfluidic technologies for routine applications in industry and academia has been successfully demonstrated over the past years, its inherent potential is not fully exploited till now. Especially regarding to the droplet generation reproducibility and stability, two pivotally important parameters for successful applications, there is still a need for improvement. This is even more considerable when droplets are created to investigate tissue fragments or cell cultures (e.g. suspended cells or 3D cell cultures) over days or even weeks. In this study we present microfluidic chips composed of a plasma coated polymer, which allow surfactants-free, highly reproducible and stable droplet generation from fluids like cell culture media. We demonstrate how different microfluidic designs and different flow rates (and flow rate ratios) affect the reproducibility of the droplet generation process and display the applicability for a wide variety of bio(techno)logically relevant media

    Application of Heterokaryons of Aspergillus

    No full text
    corecore