10 research outputs found
The polygenic basis of relapse after a first episode of schizophrenia
Little is known about genetic predisposition to relapse. Previous studies have linked cognitive and psychopathological (mainly schizophrenia and bipolar disorder) polygenic risk scores (PRS) with clinical manifestations of the disease. This study aims to explore the potential role of PRS from major mental disorders and cognition on schizophrenia relapse. 114 patients recruited in the 2EPs Project were included (56 patients who had not experienced relapse after 3 years of enrollment and 58 patients who relapsed during the 3-year follow-up). PRS for schizophrenia (PRS-SZ), bipolar disorder (PRS-BD), education attainment (PRS-EA) and cognitive performance (PRS-CP) were used to assess the genetic risk of schizophrenia relapse.Patients with higher PRS-EA, showed both a lower risk (OR=0.29, 95% CI [0.11–0.73]) and a later onset of relapse (30.96± 1.74 vs. 23.12± 1.14 months, p=0.007. Our study provides evidence that the genetic burden of neurocognitive function is a potentially predictors of relapse that could be incorporated into future risk prediction models. Moreover, appropriate treatments for cognitive symptoms appear to be important for improving the long-term clinical outcome of relapse
A longitudinal study of gene expression in first-episode schizophrenia; exploring relapse mechanisms by co-expression analysis in peripheral blood
Little is known about the pathophysiological mechanisms of relapse in first-episode schizophrenia, which limits the study of potential biomarkers. To explore relapse mechanisms and identify potential biomarkers for relapse prediction, we analyzed gene expression in peripheral blood in a cohort of first-episode schizophrenia patients with less than 5 years of evolution who had been evaluated over a 3-year follow-up period. A total of 91 participants of the 2EPs project formed the sample for baseline gene expression analysis. Of these, 67 provided biological samples at follow-up (36 after 3 years and 31 at relapse). Gene expression was assessed using the Clariom S Human Array. Weighted gene co-expression network analysis was applied to identify modules of co-expressed genes and to analyze their preservation after 3 years of follow-up or at relapse. Among the 25 modules identified, one module was semi-conserved at relapse (DarkTurquoise) and was enriched with risk genes for schizophrenia, showing a dysregulation of the TCF4 gene network in the module. Two modules were semi-conserved both at relapse and after 3 years of follow-up (DarkRed and DarkGrey) and were found to be biologically associated with protein modification and protein location processes. Higher expression of DarkRed genes was associated with higher risk of suffering a relapse and early appearance of relapse (p = 0.045). Our findings suggest that a dysregulation of the TCF4 network could be an important step in the biological process that leads to relapse and suggest that genes related to the ubiquitin proteosome system could be potential biomarkers of relapse. © 2021, The Author(s)
The polygenic basis of relapse after a first episode of schizophrenia
Little is known about genetic predisposition to relapse. Previous studies have linked cognitive and psychopathological (mainly schizophrenia and bipolar disorder) polygenic risk scores (PRS) with clinical manifestations of the disease. This study aims to explore the potential role of PRS from major mental disorders and cognition on schizophrenia relapse. 114 patients recruited in the 2EPs Project were included (56 patients who had not experienced relapse after 3 years of enrollment and 58 patients who relapsed during the 3-year follow-up). PRS for schizophrenia (PRS-SZ), bipolar disorder (PRS-BD), education attainment (PRS-EA) and cognitive performance (PRS-CP) were used to assess the genetic risk of schizophrenia relapse.Patients with higher PRS-EA, showed both a lower risk (OR=0.29, 95% CI [0.11–0.73]) and a later onset of relapse (30.96± 1.74 vs. 23.12± 1.14 months, p=0.007. Our study provides evidence that the genetic burden of neurocognitive function is a potentially predictors of relapse that could be incorporated into future risk prediction models. Moreover, appropriate treatments for cognitive symptoms appear to be important for improving the long-term clinical outcome of relapse
A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES)
In this article, we introduce ARES (Antibiotic Resistance Evolution Simulator) a software device that simulates P-system model scenarios with five types of nested computing membranes oriented to emulate a
hierarchy of eco-biological compartments, i.e. a) peripheral ecosystem; b) local environment; c) reservoir of supplies; d) animal host; and e) host's associated bacterial organisms (microbiome). Computational objects emulating molecular entities such as plasmids, antibiotic resistance genes, antimicrobials, and/or other substances can be introduced into this framework and may interact and evolve together with the membranes, according to a set of pre-established rules and specifications. ARES has been implemented as an online server and offers additional tools for storage and model editing and downstream analysisThis work has also been supported by grants BFU2012-39816-C02-01 (co-financed by FEDER funds and the Ministry of Economy and Competitiveness, Spain) to AL and Prometeo/2009/092 (Ministry of Education, Government of Valencia, Spain) and Explora Ciencia y Explora Tecnologia/SAF2013-49788-EXP (Spanish Ministry of Economy and Competitiveness) to AM. IRF is recipient of a "Sara Borrell" postdoctoral fellowship (Ref. CD12/00492) from the Ministry of Economy and Competitiveness (Spain). We are also grateful to the Spanish Network for the Study of Plasmids and Extrachromosomal Elements (REDEEX) for encouraging and funding cooperation among Spanish microbiologists working on the biology of mobile genetic elements (Spanish Ministry of Science and Innovation, reference number BFU2011-14145-E).Campos Frances, M.; Llorens, C.; Sempere Luna, JM.; Futami, R.; Rodríguez, I.; Carrasco, P.; Capilla, R.... (2015). A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biology Direct. 10(41):1-13. https://doi.org/10.1186/s13062-015-0070-9S1131041Baquero F, Coque TM, Canton R. Counteracting antibiotic resistance: breaking barriers among antibacterial strategies. Expert Opin Ther Targets. 2014;18:851–61.Baquero F, Lanza VF, Canton R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl. 2014;8:223–39.Baquero F, Coque TM, de la Cruz F. Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother. 2011;55:3649–60.Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D, et al. Ready for a world without antibiotics? The pensieres antibiotic resistance call to action. Antimicrob Resist Infect Control. 2012;1:11.Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13:1057–98.G8-Science-Ministers-Statement. 2013. https://www.gov.uk/government/news/g8-science-ministers-statement .Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:S122–9.Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis. 2013;13:155–65.Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24:718–33.Marshall BM, Ochieng DJ, Levy SB. Commensals: underappreciated reservoir of antibiotic resistance. Microbe. 2009;4:231–8.Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337:1107–11.Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol. 2011;14:236–43.Teillant A, Laxminarayan R. Economics of Antibiotic Use in U.S. Swine and Poultry Production. Choices. 2015;30:1. 1st Quarter 2015.ANTIBIOTIC RESISTANCE THREATS in the United States. http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf .Gillings MR. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol. 2013;4:4.Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–33.Palmer AC, Kishony R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat Rev Genet. 2013;14:243–8.Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol. 2013;4:15.Partridge SR. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev. 2011;35:820–55.Baquero F, Coque TM. Multilevel population genetics in antibiotic resistance. FEMS Microbiol Rev. 2011;35:705–6.Martinez JL, Baquero F, Andersson DI. Predicting antibiotic resistance. Nat Rev Microbiol. 2007;5:958–65.Martinez JL, Baquero F. Emergence and spread of antibiotic resistance: setting a parameter space. Upsala Journal of Medical Sciences. Upsala J Med Sci. 2014, Early Online: 1–10, doi: 10.3109/03009734.2014.901444 ).Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;18 Suppl 4:2–4.Kumsa B, Socolovschi C, Parola P, Rolain JM, Raoult D. Molecular detection of Acinetobacter species in lice and keds of domestic animals in Oromia Regional State. Ethiopia PLoS One. 2012;7:e52377.Ahmad A, Ghosh A, Schal C, Zurek L. Insects in confined swine operations carry a large antibiotic resistant and potentially virulent enterococcal community. BMC Microbiol. 2011;11:23.Graczyk TK, Knight R, Gilman RH, Cranfield MR. The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect. 2001;3:231–5.Limoee M, Enayati AA, Khassi K, Salimi M, Ladonni H. Insecticide resistance and synergism of three field-collected strains of the German cockroach Blattella germanica (L.) (Dictyoptera: Blattellidae) from hospitals in Kermanshah, Iran. Trop Biomed. 2011;28:111–8.Salehzadeha A, Tavacolb P, Mahjubc H. Bacterial, fungal and parasitic contamination of cockroaches in public hospitals of Hamadan, Iran. J Vect Borne Dis. 2007;44:105–10.Akinjogunla OJ, Odeyemi AT, Udoinyang EP. Cockroaches (periplaneta americana and blattella germanica): reservoirs of multi drug resistant (MDR) bacteria in Uyo, Akwa Ibom State. Scientific J Biol Sci. 2012;1:19–30.Mideo N, Alizon S, Day T. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol Evol. 2008;23:511–7.Gillings MR, Stokes HW. Are humans increasing bacterial evolvability? Trends EcolEvol. 2012;27:346–52.Baquero F. Environmental stress and evolvability in microbial systems. Clin Microbiol Infect. 2009;15 Suppl 1:5–10.Paun G, Rozemberg G, Salomaa A. The Oxford Handbook of Membrane Computing. Oxford, London. Oxford University Press. 2010.Paun G. Membrane Computing. An Introduction. Berlin, Heidelberg. Springer-Verlag GmbH. 2002.Paun G. Computing with membranes. J Comput Syst Sci. 2000;61:108–43.Fontana F, Biancom L, Manca V. P systems and the modeling of biochemical oscillations. Lect Notes Comput Sci. 2006;3850:199–208.Cheruku S, Paun A, Romero-Campero FJ, Perez-Jimenez MJ, Ibarra OH. Simulating FAS-induced apoptosis by using P systems. Prog Nat Sci. 2007;4:424–31.Perez-Jimenez MJ, Romero-Campero FJ. P systems, a new computational modelling tool for systems biology. Transactions on computational systems. Lect N Bioinformat. 2006;Biology VI:176–97.Romero-Campero FJ, Perez-Jimenez MJ. Modelling gene expression control using P systems: The Lac Operon, a case study. Biosystems. 2008;91:438–57.Romero-Campero FJ, Perez-Jimenez MJ. A model of the quorum sensing system in Vibrio fischeri using P systems. Artif Life. 2008;14:95–109.Besozzi D, Cazzaniga P, Pescini D, Mauri G. Modelling metapopulations with stochastic membrane systems. Biosystems. 2008;91:499–514.Cardona M, Colomer MA, Perez-Jimenez MJ, Sanuy D, Margalida A. Modelling ecosystems using P Systems: The Bearded Vulture, a case of study. Lect Notes Comput Sci. 2009;5391:137–56.Cardona M, Colomer MA, Margalida A, Perez-Hurtado I, Perez-Jimenez MJ, Sanuy D. A P system based model of an ecosystem of some scavenger birds. Lect Notes Comput Sci. 2010;5957:182–95.Frisco P, Gheorghe M, Perez-Jimenez M. Applications of Membrane Computing in Systems and Synthetic biology. Cham. Springer International Publishing. 2014.Membrane Computing Community. http://ppage.psystems.eu .P-Lingua. http://www.p-lingua.org/wiki/index.php/Main_Page .Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 2011;39:D70–4.Baquero F. From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat Rev Microbiol. 2004;2:510–8.Java. http://www.java.com .Garcia-Quismondo M, Gutierrez-Escudero R, Martinez-del-Amor MA, Orejuela-Pinedo E, Pérez-Hurtado I. P-Lingua 2.0: a software framework for cell-like P systems. Int J Comput Commun. 2009;IV:234.R programming language. http://www.r-project.org .Maciel A, Sankaranarayanan G, Halic T, Arikatla VS, Lu Z, De S. Surgical model-view-controller simulation software framework for local and collaborative applications. Int J Comput Assist Radiol Surg. 2011;6:457–71.Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449:811–8.Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6:776–88.Pallen MJ, Wren BW. Bacterial pathogenomics. Nature. 2007;449:835–42.Carrasco P, Perez-Cobas AE, Van de Pol C, Baixeras J, Moya A, Latorre A. Succession of the gut microbiota in the cockroach Blattella germanica. Int Microbiol. 2014;17:99–109
Performance analysis of a capacitive deionization stack for brackish water desalination
Capacitive deionization (CDI), a promising ion removal technology, has shown encouraging results in the last decade. In this work a comprehensive characterization of a CDI prototype equipped with 3D graphite felt electrodes is shown. Initially, a study of different flow distributor designs, analyzed by Computational Flow Dynamic (CFD), determined the importance of elements such as small inlet cavities or perforated channels to achieve a uniform fluid flow distribution. Then, an evaluation under different operational parameters and modes (batch and single pass, SP) demonstrated the strong flexibility in terms of performance that the CDI system is able to offer. Thus, in general terms, SP experiments were able to produce larger quantities of water (14–47 L h−1 m−2) than batch experiments (2–24 L h−1 m−2) although obtaining lower salt concentration reductions (1–2 mM vs 6–10 mM, respectively). The CDI stack was tested for 350 galvanostatic cycles (700 h of operation) showing an exceptional robustness in performance. Energy consumption values below 200 Wh m−3 were obtained for SP experiments, whereas that value increased to 600 Wh m−3 for batch tests. Nevertheless, by implementing an energy recovery system these values could be reduced by an average of 40–50%