37 research outputs found

    A population-based nested case control study on recurrent pneumonias in children with severe generalized cerebral palsy: ethical considerations of the design and representativeness of the study sample

    Get PDF
    BACKGROUND: In children with severe generalized cerebral palsy, pneumonias are a major health issue. Malnutrition, dysphagia, gastro-oesophageal reflux, impaired respiratory function and constipation are hypothesized risk factors. Still, no data are available on the relative contribution of these possible risk factors in the described population. This paper describes the initiation of a study in 194 children with severe generalized cerebral palsy, on the prevalence and on the impact of these hypothesized risk factors of recurrent pneumonias. METHODS/DESIGN: A nested case-control design with 18 months follow-up was chosen. Dysphagia, respiratory function and constipation will be assessed at baseline, malnutrition and gastro-oesophageal reflux at the end of the follow-up. The study population consists of a representative population sample of children with severe generalized cerebral palsy. Inclusion was done through care-centres in a predefined geographical area and not through hospitals. All measurements will be done on-site which sets high demands on all measurements. If these demands were not met in "gold standard" methods, other methods were chosen. Although the inclusion period was prolonged, the desired sample size of 300 children was not met. With a consent rate of 33%, nearly 10% of all eligible children in The Netherlands are included (n = 194). The study population is subtly different from the non-participants with regard to severity of dysphagia and prevalence rates of pneumonias and gastro-oesophageal reflux. DISCUSSION: Ethical issues complicated the study design. Assessment of malnutrition and gastro-oesophageal reflux at baseline was considered unethical, since these conditions can be easily treated. Therefore, we postponed these diagnostics until the end of the follow-up. In order to include a representative sample, all eligible children in a predefined geographical area had to be contacted. To increase the consent rate, on-site measurements are of first choice, but timely inclusion is jeopardized. The initiation of this first study among children with severe neurological impairment led to specific, unexpected problems. Despite small differences between participants and non-participating children, our sample is as representative as can be expected from any population-based study and will provide important, new information to bring us further towards effective interventions to prevent pneumonias in this population

    Antipodal Vivaldi antennas with foldable hinged plates for adaptive polarization and gain adjustments

    No full text
    This letter proposes a novel approach to adaptive polarization and gain adjustments for antipodal Vivaldi antennas using foldable hinged plates. The proposed antenna consists of upper and lower flared wings, and the wings are electrically extended using two rectangular plates. Metal hinges are then adopted to fold and unfold the plates, which allows the antenna to adjust the polarization in the entire range of the axial ratio and to further enhance the gain in the end-fire direction. Measured antenna characteristics demonstrate that the polarization and the gains are adaptively adjusted by varying the tilt angles of the hinged plates without a distortion of the broadband properties

    Design of rear glass-integrated antennas with vertical line optimization for FM radio reception

    No full text
    We propose an glass-integrated antenna with vertical lines for FM radio reception in a commercial sedan. The proposed antenna consists of vertical lines and multiple horizontal lines that are also used as defroster lines. The proposed antenna structure is optimized with the genetic algorithm (GA) in conjunction with the FEKO EM simulator. The optimized antenna was built and installed on an Azera test vehicle (Korean model: TG Grandure 270) from Hyundai-Kia Motors and antenna performances such as reflection coefficients, and bore-sight gain are measured in an anechoic chamber. The optimized antenna shows a half power matching bandwidth of 26 % at the center frequency of the FM radio band and an average boresight gain of about -10.37 dBi. Then, we performed a field test to measure actual received power of FM radio signals. The field test result shows that the proposed antenna is capable of maintaining higher received power levels compared to the conventional antenna for both the strong and weak signals in the real urban situation

    State of the Art of Ex-Situ Aluminium Matrix Composite Fabrication through Friction Stir Processing

    No full text
    Aluminium metal matrix composites (AMMCs) are the fastest developing materials for structural applications. Friction Stir Processing (FSP) has evolved as a promising surface composite fabrication technique mainly because it is an eco-friendly and solid-state process. A spurt in the interest of research community and a resulting huge research output makes it difficult to find relevant information to further the research with objectivity. To facilitate this, the present article addresses the current state of the art and development in surface metal matrix fabrication through FSP with a specific focus on ex-situ routes. The available literature has been carefully read and categorized to present effects of particle size, morphology and elemental composition. The effect of various reinforcements on development of different functional characteristics is also discussed. Effect of main FSP parameters on various responses is presented with objectivity. Based on the studied literature concluding summary is presented in a manner in which the literature becomes useful to the researchers working on this important technology

    A Novel Study on the Effect of Tool Offset in Friction Stir Processing for Mg-NiTi Composite

    No full text
    Mg-NiTi-based metal matrix composites are appropriate solutions for the two most important goals of material engineers in the present day, i.e., imparting functional behaviour and the light weighting of metallic structures. In recent years, due to its solid-state nature, the development of Mg-based metal matrix composites has largely benefited from friction stir processing. Despite the great effort of researchers in the domain of friction stir welding and processing, finding optimum process parameters for efficient material mixing and consolidation remains a rigorous and exhaustive challenge. Tool offset variation has been seen to aid the integrity and strength of friction stir welds; however, its effect upon the stir zone structure, material flow, particle distribution, and defect formation has not been investigated for friction stir processing. Therefore, the authors employed Mg as the base metal and NiTi shape memory alloy as the reinforcement to the targeted metal matrix composite. The tool offset was linearly varied by tilting the slotted length with respect to the traverse direction. Friction stir processing performed at a rotational speed of 560 rpm and traverse speed of 80 mm/min revealed crucial changes in defect morphology and area, which has been explicated with the quantified variation in tool offset from the advancing side to the retreating side. For the positive offset conditions, i.e., tool offset towards the advancing side, the shape of the tunnelling defect was chiefly convex from the outward direction. Meanwhile, for the negative offset conditions, i.e., tool offset towards the retreating side, the tunnelling defect exhibited a concave outward shape. A transition from rectangular to triangular morphology was also observed as the tool moved from an offset of 1.75 mm in the advancing side to 1.75 mm in the retreating side

    Another Approach to Characterize Particle Distribution during Surface Composite Fabrication Using Friction Stir Processing

    No full text
    Surface composite fabrication through Friction Stir Processing (FSP) is evolving as a useful clean process to enhance surface properties of substrate. Better particle distribution is key to the success of surface composite fabrication which is achieved through multiple passes. Multiple passes significantly increase net energy input and undermine the essence of this clean process. This study proposes a novel approach and indices to relate the particle distribution with the FSP parameters. It also proposes methodology for predicting responses and relate the response with the input parameter. Unit stirring as derived parameter consisting of tool rotation speed in revolutions per minute (rpm), traverse speed and shoulder diameter was proposed. The particle distribution was identified to be achieved in three stages and all three stages bear close relationship with unit stirring. Three discrete stages of particle distribution were identified: degree of spreading, mixing and dispersion. Surface composite on an aerospace grade aluminum alloy AA7050 was fabricated successfully using TiB2 as reinforcement particles. FSP was performed with varied shoulder diameter, rotational speed and traversing speed and constant tool tilt and plunge depth using single pass processing technique to understand the stages of distribution. Significant relationships between processing parameters and stages of particle distribution were identified and discussed

    Recent Advancements in Evacuated Tube Solar Water Heaters: A Critical Review of the Integration of Phase Change Materials and Nanofluids with ETCs

    No full text
    Evacuated tube solar water heaters are gaining more attention in the present market scenario as compared to conventional collectors. Such collectors are versatile because no solar tracking is required and the operating temperature range is also broad. Comparatively, it is cost-effective and may attain higher thermal efficiency. However, like other collectors, continuous energy supply is sometimes hampered by the intermittent nature of solar radiation. This problem can be partially resolved by using phase change materials (PCM) in the evacuated tube solar collector (ETC). PCMs can store the energy during the sunshine hours, which can be released when solar energy is not available. In the literature, several studies are available pertaining to the use of PCMs in ETC-based solar water heaters. The literature indicates that the integration of PCMs with ETCs has several merits. Nevertheless, systematic, and comprehensive review papers dedicated to such integrated energy storage systems with ETC solar water heaters are not available. Hence, the objective of this work is to compile the relevant experimental, numerical, and theoretical works reported in the literature. The present paper broadly reviews the recent design modifications, PCM integration with different kinds of ETC water heaters, and their life cycle assessment. Furthermore, studies in the literature pertaining to the application of nanoparticles in ETC systems are also discussed, and finally, a roadmap for this energy storage system is provided
    corecore