16 research outputs found
On Spin Calogero-Moser system at infinity
We present a construction of a new integrable model as an infinite limit of Calogero models of N particles with spin. It is implemented in the multicomponent Fock space. Explicit formulas for Dunkl operators, the Yangian generators in the multicomponent Fock space are presented. The classical limit of the system is examined
Mass splittings of nuclear isotopes in chiral soliton approach
The differences of the masses of nuclear isotopes with atomic numbers between
\~10 and ~30 can be described within the chiral soliton approach in
satisfactory agreement with data. Rescaling of the model is necessary for this
purpose - decrease of the Skyrme constant by about 30%, providing the "nuclear
variant" of the model. The asymmetric term in Weizsaecker-Bethe- Bacher mass
formula for nuclei can be obtained as the isospin dependent quantum correction
to the nucleus energy. Some predictions for the binding energies of neutron
rich nuclides are made in this way, from, e.g. Be-16 and B-19 to Ne-31 and
Na-32. Neutron rich nuclides with high values of isospin are unstable relative
to strong interactions. The SK4 (Skyrme) variant of the model, as well as SK6
variant (6-th order term in chiral derivatives in the lagrangian as solitons
stabilizer) are considered, and the rational map approximation is used to
describe multiskyrmions.Comment: 16 pages, 10 tables, 2 figures. Figures are added and few misprints
are removed. Submitted to Phys. Atom. Nucl. (Yad. Fiz.
Mu2e Technical Design Report
The Mu2e experiment at Fermilab will search for charged lepton flavor
violation via the coherent conversion process mu- N --> e- N with a sensitivity
approximately four orders of magnitude better than the current world's best
limits for this process. The experiment's sensitivity offers discovery
potential over a wide array of new physics models and probes mass scales well
beyond the reach of the LHC. We describe herein the preliminary design of the
proposed Mu2e experiment. This document was created in partial fulfillment of
the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution
available at http://mu2e.fnal.gov; corrected typo in background summary,
Table 3.
Enhancing the Performance of Supercapacitor Activated Carbon Electrodes by Oxidation
Oxidation of activated carbon (AC) with nitric acid was carried out, and the resulting AC/HNO3 showed high capacity when used as supercapacitor electrode material operated in the KOH electrolyte. Oxidation caused different structural changes in the AC, reducing the specific surface area and the total pore volume. After oxidation, the content of all types of oxygen-containing groups and, especially, carboxyl groups showed a significant increase. Despite the significant reduction of the specific surface area, the specific capacitance of the oxidized AC in symmetric supercapacitor electrodes is 1.4 times larger than that for the pristine AC