30,273 research outputs found

    The mathematical basis for deterministic quantum mechanics

    Full text link
    If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes is further elucidated, as it follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.Comment: 17 pages, 3 figures. Minor corrections, comments and explanations adde

    On the reconstruction of planar lattice-convex sets from the covariogram

    Full text link
    A finite subset KK of Zd\mathbb{Z}^d is said to be lattice-convex if KK is the intersection of Zd\mathbb{Z}^d with a convex set. The covariogram gKg_K of K⊆ZdK\subseteq \mathbb{Z}^d is the function associating to each u \in \integer^d the cardinality of K∩(K+u)K\cap (K+u). Daurat, G\'erard, and Nivat and independently Gardner, Gronchi, and Zong raised the problem on the reconstruction of lattice-convex sets KK from gKg_K. We provide a partial positive answer to this problem by showing that for d=2d=2 and under mild extra assumptions, gKg_K determines KK up to translations and reflections. As a complement to the theorem on reconstruction we also extend the known counterexamples (i.e., planar lattice-convex sets which are not reconstructible, up to translations and reflections) to an infinite family of counterexamples.Comment: accepted in Discrete and Computational Geometr

    Multifractal analysis of perceptron learning with errors

    Full text link
    Random input patterns induce a partition of the coupling space of a perceptron into cells labeled by their output sequences. Learning some data with a maximal error rate leads to clusters of neighboring cells. By analyzing the internal structure of these clusters with the formalism of multifractals, we can handle different storage and generalization tasks for lazy students and absent-minded teachers within one unified approach. The results also allow some conclusions on the spatial distribution of cells.Comment: 11 pages, RevTex, 3 eps figures, version to be published in Phys. Rev. E 01Jan9
    • …
    corecore