3,156 research outputs found
Phase transition between d-wave and anisotropic s-wave gaps in high temperature oxides superconductors
We study models for superconductivity with two interactions: due to
antiferromagnetic(AF) fluctuations and due to phonons, in a weak coupling
approach to the high temperature superconductivity. The nature of the two
interactions are considerably different; is positive and sharply peaked
at (,) while is negative and peaked at () due to
weak phonon screening. We numerically find (a) weak BCS attraction is enough to
have high critical temperature if a van Hove anomaly is at work, (b) (AF)
is important to give d-wave superconductivity, (c) the gap order parameter
is constant(s-wave) at extremely overdope region and it
changes to anisotropic s-wave as doping is reduced, (d) there exists a first
order phase transition between d-wave and anisotropic s-wave gaps. These
results are qualitatively in agreement with preceding works; they should be
modified in the strongly underdope region by the presence of antiferromagnetic
fluctuations and ensuing AF pseudogap.Comment: 4 pages in RevTex (double column), 4 figure
A Compact Approximate Solution to the Friedel-Anderson Impuriy Problem
An approximate groundstate of the Anderson-Friedel impurity problem is
presented in a very compact form. It requires solely the optimization of two
localized electron states and consists of four Slater states (Slater
determinants). The resulting singlet ground state energy lies far below the
Anderson mean field solution and agrees well with the numerical results by
Gunnarsson and Schoenhammer, who used an extensive 1/N_{f}-expansion for a spin
1/2 impurity with double occupancy of the impurity level.
PACS: 85.20.Hr, 72.15.R
The Friedel oscillations in the presence of transport currents
We investigate the Friedel oscillations in a nanowire coupled to two
macroscopic electrodes of different potentials. We show that the wave-length of
the density oscillations monotonically increases with the bias voltage, whereas
the amplitude and the spatial decay exponent of the oscillations remain intact.
Using the nonequilibrium Keldysh Green functions, we derive an explicit formula
that describes voltage dependence of the wave-length of the Friedel
oscillations.Comment: 5 pages, 3 figures, RevTe
Disclinations, dislocations and continuous defects: a reappraisal
Disclinations, first observed in mesomorphic phases, are relevant to a number
of ill-ordered condensed matter media, with continuous symmetries or frustrated
order. They also appear in polycrystals at the edges of grain boundaries. They
are of limited interest in solid single crystals, where, owing to their large
elastic stresses, they mostly appear in close pairs of opposite signs. The
relaxation mechanisms associated with a disclination in its creation, motion,
change of shape, involve an interplay with continuous or quantized dislocations
and/or continuous disclinations. These are attached to the disclinations or are
akin to Nye's dislocation densities, well suited here. The notion of 'extended
Volterra process' takes these relaxation processes into account and covers
different situations where this interplay takes place. These concepts are
illustrated by applications in amorphous solids, mesomorphic phases and
frustrated media in their curved habit space. The powerful topological theory
of line defects only considers defects stable against relaxation processes
compatible with the structure considered. It can be seen as a simplified case
of the approach considered here, well suited for media of high plasticity
or/and complex structures. Topological stability cannot guarantee energetic
stability and sometimes cannot distinguish finer details of structure of
defects.Comment: 72 pages, 36 figure
On the nature of antiferromagnetism in the CO_2 planes of oxide superconductors
Recent results on electrons and holes doped CuO 2 planes confirm the marked
covalency of CuO bonding, suggesting a band picture of long and short range
antiferromagnetism. The maxima of superconductive T c versus doping can be
related to the crossing by the Fermi level of the edges of the pseudogap due to
antiferromagnetic short range order (bonding edge for holes doping, antibonding
one for electrons doping). The symmetry of the superconductive gap can be
related to the Bragg scattering of electronic Bloch states near the edges of
the AF pseudogap. Assuming a standard phonon coupling, one then predicts for
commensurate AF a pure d symmetry of the superconductive gap for underdoped
samples and d symmetry plus an ip contribution increasing linearly with
overdoping. This seems in agreement with recent measurements of gap symmetry
for YBCO, but should be more fully tested, especially for electron doped
samples. The simple band approximation used here could no doubt be made more
realistic by a specific inclusion of electron correlations and by a better
description of AF short range order. Uncommensurate AF, as in LSCO, is not
considered here
Enhancement of superconductive critical temperatures in almost empty or full bands in two dimensions: possible relevance to beta-HfNCl, C60 and MgB2
We examine possibility of enhancement of superconductive critical temperature
in two-dimensions. The weak coupling BCS theory is applied, especially when the
Fermi level is near the edges of the electronic bands. The attractive
interaction depends on due to screening. The density of states(DOS)
does not have a peak near the bottom of the band, but -dependent
contribution to DOS (electron density on the Fermi surface) has a diverging
peak at the bottom or top. These features lead to significant enhancement of
the critical temperatures. The results are qualitatively consistent with the
superconductive behaviors of HfNCl (\Tc \le 25K) and ZrNCl(\Tc \le 15K),
C with a field-effect transistor configuration (\Tc = 52K), and
MgB (\Tc \approx 40K) which have the unexpectedly high superconductive
critical transition temperatures.Comment: 5 pages,4 figure
Response of Root Properties to Tripartite Symbiosis between Lucerne (Medicago sativa L.), Rhizobia and Mycorrhiza Under Dry Organic Farming Conditions
It is generally considered that root turnover is a major contributor to organic matter and mineral nutrient cycles in organic managed agroecosystems. Approach: This study designed to investigate whether microbial activity could affect on root properties of lucerne in an organically managed field under dry weather conditions. The trial was laid out as a factorial experiment in the fields of the University of Natural Resources and Applied Life Sciences, Vienna-Austria at Raasdorf in 2007. The experimental factors of Sinorhizobium meliloti and arbuscular mycorrhiza (AM) including Glomus etunicatum, G. intraradices and G. claroideum and irrigation levels were tested. Results: Results showed that increasing water deficit affected root dry weigh, specific root mass and root length significantly at 1% level and co-inoculation of rhizobium and mycorrhiza with irrigation could increase all root parameters. Data’s of variance analysis for mycorrhizal colonization showed that main effect of using mycorrhiza had significant effects on root parameters at 5% and 1% probability level in first and second harvest, respectively. Results of mean comparisons by Duncan’s multiple range test showed that mycorrhizal colonization was higher in the inoculated treatments by rhizobium , mycorrhiza and irrigated plots in both harvests. Double interaction of mycorrhiza and irrigation was higher in both harvests (37.05% and 65.73%, respectively). Conclusion: Hence, it can be suggested that the tripartite symbiosis of S. meliloti, AM and lucerne can improve the performance of lucerne in organic farming and under dry conditions. Such traits could be incorporated into breeding programs to improve drought tolerance especially in organic fields
A new neutron study of the short range order inversion in FeCr
We have performed new neutron diffuse scattering measurements in
FeCr solid solutions, in a concentration range 0x0.15, where
the atomic distribution shows an inversion of the short range order. By
optimizing the signal-background ratio, we obtain an accurate determination of
the concentration of inversion x =0.110(5). We determine the near neighbor
atomic short range order parameters and pair potentials, which change sign at
x. The experimental results are compared with previous first principle
calculations and atomistic simulations.Comment: 6 pages; 6 figure
Heat capacity of the quantum magnet TiOCl
Measurements of the heat capacity C(T,H) of the one-dimensional quantum
magnet TiOCl are presented for temperatures 2K < T < 300K and magnetic fields
up to 5T. Distinct anomalies at 91K and 67K signal two subsequent phase
transitions. The lower of these transitions clearly is of first order and seems
to be related to the spin degrees of freedom. The transition at 92K probably
involves the lattice and/or orbital moments. A detailed analysis of the data
reveals that the entropy change through both transitions is surprisingly small
(~ 0.1R), pointing to the existence strong fluctuations well into the
non-ordered high-temperature phase. No significant magnetic field dependence
was detected.Comment: 4 pages, 2 figure
- …