387 research outputs found
Ideal Bose gas in fractal dimensions and superfluid He in porous media
Physical properties of ideal Bose gas with the fractal dimensionality between
D=2 and D=3 are theoretically investigated. Calculation shows that the
characteristic features of the specific heat and the superfluid density of
ideal Bose gas in fractal dimensions are strikingly similar to those of
superfluid Helium-4 in porous media. This result indicates that the geometrical
factor is dominant over mutual interactions in determining physical properties
of Helium-4 in porous media.Comment: 13 pages, 6 figure
Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal
Here we demonstrate that water-infiltrated nanoporous glass electrically
switches an oxide semiconductor from an insulator to metal. We fabricated the
field effect transistor structure on an oxide semiconductor, SrTiO3, using
100%-water-infiltrated nanoporous glass - amorphous 12CaO*7Al2O3 - as the gate
insulator. For positive gate voltage, electron accumulation, water electrolysis
and electrochemical reduction occur successively on the SrTiO3 surface at room
temperature, leading to the formation of a thin (~3 nm) metal layer with an
extremely high electron concentration of 10^15-10^16 cm^-2, which exhibits
exotic thermoelectric behaviour.Comment: 21 pages, 12 figure
Tuning of metal-insulator transition of two-dimensional electrons at parylene/SrTiO interface by electric field
Electrostatic carrier doping using a field-effect-transistor structure is an
intriguing approach to explore electronic phases by critical control of carrier
concentration. We demonstrate the reversible control of the insulator-metal
transition (IMT) in a two dimensional (2D) electron gas at the interface of
insulating SrTiO single crystals. Superconductivity was observed in a
limited number of devices doped far beyond the IMT, which may imply the
presence of 2D metal-superconductor transition. This realization of a
two-dimensional metallic state on the most widely-used perovskite oxide is the
best manifestation of the potential of oxide electronics
Photogenerated Carriers in SrTiO3 Probed by Mid-Infrared Absorption
Infrared absorption spectra of SrTiO have been measured under
above-band-gap photoexcitations to study the properties of photogenerated
carriers, which should play important roles in previously reported photoinduced
phenomena in SrTiO. A broad absorption band appears over the entire
mid-infrared region under photoexcitation. Detailed energy, temperature, and
excitation power dependences of the photoinduced absorption are reported. This
photo-induced absorption is attributed to the intragap excitations of the
photogenerated carriers. The data show the existence of a high density of
in-gap states for the photocarriers, which extends over a wide energy range
starting from the conduction and valence band edges.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
Phase Fluctuations and Pseudogap Phenomena
This article reviews the current status of precursor superconducting phase
fluctuations as a possible mechanism for pseudogap formation in
high-temperature superconductors. In particular we compare this approach which
relies on the two-dimensional nature of the superconductivity to the often used
-matrix approach. Starting from simple pairing Hamiltonians we present a
broad pedagogical introduction to the BCS-Bose crossover problem. The finite
temperature extension of these models naturally leads to a discussion of the
Berezinskii-Kosterlitz-Thouless superconducting transition and the related
phase diagram including the effects of quantum phase fluctuations and
impurities. We stress the differences between simple Bose-BCS crossover
theories and the current approach where one can have a large pseudogap region
even at high carrier density where the Fermi surface is well-defined. The
Green's function and its associated spectral function, which explicitly show
non-Fermi liquid behaviour, is constructed in the presence of vortices. Finally
different mechanisms including quasi-particle-vortex and vortex-vortex
interactions for the filling of the gap above are considered.Comment: 129 pages, Elsart, 28 EPS figures; Physics Reports, in press. Authors
related information under
"http://nonlin.bitp.kiev.ua/~sharapov/superconductivity.html
Lattice dynamics effects on small polaron properties
This study details the conditions under which strong-coupling perturbation
theory can be applied to the molecular crystal model, a fundamental theoretical
tool for analysis of the polaron properties. I show that lattice dimensionality
and intermolecular forces play a key role in imposing constraints on the
applicability of the perturbative approach. The polaron effective mass has been
computed in different regimes ranging from the fully antiadiabatic to the fully
adiabatic. The polaron masses become essentially dimension independent for
sufficiently strong intermolecular coupling strengths and converge to much
lower values than those tradition-ally obtained in small-polaron theory. I find
evidence for a self-trapping transition in a moderately adiabatic regime at an
electron-phonon coupling value of .3. Our results point to a substantial
independence of the self-trapping event on dimensionality.Comment: 8 pages, 5 figure
TBX4 variants and pulmonary diseases:getting out of the 'Box'
Purpose of review In 2013, the association between T-Box factor 4 (TBX4) variants and pulmonary arterial hypertension (PAH) has first been described. Now - in 2020 - growing evidence is emerging indicating that TBX4 variants associate with a wide spectrum of lung disorders. Recent findings TBX4 variants are enriched in both children and adults with PAH. The clinical phenotype associated with a TBX4 variant seems to be milder than that in other PAH-associated gene mutations. Further, TBX4 variants have increasingly been associated with a variety of clinical and histopathological phenotypes, including lethal developmental parenchymal lung diseases such as not only acinar dysplasia in neonates, but also less outspoken parenchymal lung diseases in children and adults. Summary The clinical phenotype of a TBX4 variant has recently been recognised to expand from bone disorders to different types of lung diseases. Recent data suggest that variants of TBX4, a transcription factor known to be an important regulator in embryonic development, are not rare in both children and adults with PAH and/or developmental parenchymal lung diseases
UV radiation enhanced oxygen vacancy formation caused by the PLD plasma plume
Pulsed Laser Deposition is a commonly used non-equilibrium physical deposition technique for the growth of complex oxide thin films. A wide range of parameters is known to influence the properties of the used samples and thin films, especially the oxygen-vacancy concentration. One parameter has up to this point been neglected due to the challenges of separating its influence from the influence of the impinging species during growth: the UV-radiation of the plasma plume. We here present experiments enabled by a specially designed holder to allow a separation of these two influences. The influence of the UV-irradiation during pulsed laser deposition on the formation of oxygen-vacancies is investigated for the perovskite model material SrTiO3. The carrier concentration of UV-irradiated samples is nearly constant with depth and time. By contrast samples not exposed to the radiation of the plume show a depth dependence and a decrease in concentration over time. We reveal an increase in Ti-vacancy–oxygen-vacancy-complexes for UV irradiated samples, consistent with the different carrier concentrations. We find a UV enhanced oxygen-vacancy incorporation rate as responsible mechanism. We provide a complete picture of another influence parameter to be considered during pulsed laser depositions and unravel the mechanism behind persistent-photo-conductivity in SrTiO3
Local and remote forcing of interannual sea‐level variability at Nantucket Island
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, O., Lee, T., Piecuch, C., Fukumori, I., Fenty, I., Frederikse, T., Menemenlis, D., Ponte, R., & Zhang, H. Local and remote forcing of interannual sea‐level variability at Nantucket Island. Journal of Geophysical Research: Oceans, 127(6), (2022): e2021JC018275, https://doi.org/10.1029/2021jc018275.The relative contributions of local and remote wind stress and air-sea buoyancy forcing to sea-level variations along the East Coast of the United States are not well quantified, hindering the understanding of sea-level predictability there. Here, we use an adjoint sensitivity analysis together with an Estimating the Circulation and Climate of the Ocean (ECCO) ocean state estimate to establish the causality of interannual variations in Nantucket dynamic sea level. Wind forcing explains 67% of the Nantucket interannual sea-level variance, while wind and buoyancy forcing together explain 97% of the variance. Wind stress contribution is near-local, primarily from the New England shelf northeast of Nantucket. We disprove a previous hypothesis about Labrador Sea wind stress being an important driver of Nantucket sea-level variations. Buoyancy forcing, as important as wind stress in some years, includes local contributions as well as remote contributions from the subpolar North Atlantic that influence Nantucket sea level a few years later. Our rigorous adjoint-based analysis corroborates previous correlation-based studies indicating that sea-level variations in the subpolar gyre and along the United States northeast coast can both be influenced by subpolar buoyancy forcing. Forward perturbation experiments further indicate remote buoyancy forcing affects Nantucket sea level mostly through slow advective processes, although coastally trapped waves can cause rapid Nantucket sea level response within a few weeks.This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). CGP was supported by NASA Sea Level Change Team awards 80NSSC20K1241 and 80NM0018D0004
Acceleration of U.S. Southeast and Gulf coast sea-level rise amplified by internal climate variability
[eng] While there is evidence for an acceleration in global mean sea level (MSL) since the 1960s, its detection at local levels has been hampered by the considerable influence of natural variability on the rate of MSL change. Here we report a MSL acceleration in tide gauge records along the U.S. Southeast and Gulf coasts that has led to rates (>10 mm yr−1 since 2010) that are unprecedented in at least 120 years. We show that this acceleration is primarily induced by an ocean dynamic signal exceeding the externally forced response from historical climate model simulations. However, when the simulated forced response is removed from observations, the residuals are neither historically unprecedented nor inconsistent with internal variability in simulations. A large fraction of the residuals is consistent with wind driven Rossby waves in the tropical North Atlantic. This indicates that this ongoing acceleration represents the compounding effects of external forcing and internal climate variability
- …
