16,316 research outputs found
Does Corporate Governance Matter in Deposit Insurance? DI and Moral Hazard in Joint Stock and Mutual Financial Intermediaries
In this paper, we analyze the differences of effects of a deposit insurance schemes on financial cooperative and joint stock banks risk taking. We develop a methodology which includes the specifics of the utility function for the financial cooperative and we compare the results to a similar profit maximizing joint stock bank. We find that the introduction of deposit insurance does in fact increase optimal risk level for the financial cooperative but less so than the stock bank. Thus, corporate governance does matter in the level of risk exposure of a deposit insurance scheme. Further, like in joint stock banks, this moral hazard can be curbed through incentives such as risk adjusted premias, risk adjusted regulatory capital and possibly reserve requirements.
Pinsker estimators for local helioseismology
A major goal of helioseismology is the three-dimensional reconstruction of
the three velocity components of convective flows in the solar interior from
sets of wave travel-time measurements. For small amplitude flows, the forward
problem is described in good approximation by a large system of convolution
equations. The input observations are highly noisy random vectors with a known
dense covariance matrix. This leads to a large statistical linear inverse
problem.
Whereas for deterministic linear inverse problems several computationally
efficient minimax optimal regularization methods exist, only one
minimax-optimal linear estimator exists for statistical linear inverse
problems: the Pinsker estimator. However, it is often computationally
inefficient because it requires a singular value decomposition of the forward
operator or it is not applicable because of an unknown noise covariance matrix,
so it is rarely used for real-world problems. These limitations do not apply in
helioseismology. We present a simplified proof of the optimality properties of
the Pinsker estimator and show that it yields significantly better
reconstructions than traditional inversion methods used in helioseismology,
i.e.\ Regularized Least Squares (Tikhonov regularization) and SOLA (approximate
inverse) methods.
Moreover, we discuss the incorporation of the mass conservation constraint in
the Pinsker scheme using staggered grids. With this improvement we can
reconstruct not only horizontal, but also vertical velocity components that are
much smaller in amplitude
Helicity and alpha-effect by current-driven instabilities of helical magnetic fields
Helical magnetic background fields with adjustable pitch angle are imposed on
a conducting fluid in a differentially rotating cylindrical container. The
small-scale kinetic and current helicities are calculated for various field
geometries, and shown to have the opposite sign as the helicity of the
large-scale field. These helicities and also the corresponding -effect
scale with the current helicity of the background field. The -tensor is
highly anisotropic as the components and have
opposite signs. The amplitudes of the azimuthal -effect computed with
the cylindrical 3D MHD code are so small that the operation of an
dynamo on the basis of the current-driven, kink-type
instabilities of toroidal fields is highly questionable. In any case the low
value of the -effect would lead to very long growth times of a dynamo
in the radiation zone of the Sun and early-type stars of the order of
mega-years.Comment: 6 pages, 7 figures, submitted to MNRA
Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels
The existence of self-similar solutions with fat tails for Smoluchowski's
coagulation equation has so far only been established for the solvable and the
diagonal kernel. In this paper we prove the existence of such self-similar
solutions for continuous kernels that are homogeneous of degree and satisfy . More precisely,
for any we establish the existence of a continuous weak
self-similar profile with decay as
Energy Conversion Using New Thermoelectric Generator
During recent years, microelectronics helped to develop complex and varied
technologies. It appears that many of these technologies can be applied
successfully to realize Seebeck micro generators: photolithography and
deposition methods allow to elaborate thin thermoelectric structures at the
micro-scale level. Our goal is to scavenge energy by developing a miniature
power source for operating electronic components. First Bi and Sb micro-devices
on silicon glass substrate have been manufactured with an area of 1cm2
including more than one hundred junctions. Each step of process fabrication has
been optimized: photolithography, deposition process, anneals conditions and
metallic connections. Different device structures have been realized with
different micro-line dimensions. Each devices performance will be reviewed and
discussed in function of their design structure.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Design aspects of a solar array drive for spot, with a high platform stability objective
A solar array drive mechanism (MEGS) for the SPOT platform, which is a prototype of a multimission platform, is described. High-resolution cameras and other optical instruments are carried by the platform, requiring excellent platform stability in order to obtain high-quality pictures. Therefore, a severe requirement for the MEGS is the low level of disturbing torques it may generate considering the 0.6 times 10 to the minus 3 power deg/sec stability required. The mechanical design aspects aiming at reducing the mean friction torque, and therefore its fluctuations, are described as well as the method of compensation of the motor imperfections. It was concluded, however, that this is not sufficient to reach the stability requirement
Determination of the interactions in confined macroscopic Wigner islands: theory and experiments
Macroscopic Wigner islands present an interesting complementary approach to
explore the properties of two-dimensional confined particles systems. In this
work, we characterize theoretically and experimentally the interaction between
their basic components, viz., conducting spheres lying on the bottom electrode
of a plane condenser. We show that the interaction energy can be approximately
described by a decaying exponential as well as by a modified Bessel function of
the second kind. In particular, this implies that the interactions in this
system, whose characteristics are easily controllable, are the same as those
between vortices in type-II superconductors.Comment: 8 pages, 8 figure
Control / contrôle: comparing discourses of power and rebellion in hair care products
Thesis (M.A.) University of Alaska Fairbanks, 2017Since the Antiquity, female hair has been a powerful social semiotic, used to determine women's sexuality, mental states, and adherence to gender norms. As a result of this extensive signifying power, many disciplinary practices have evolved to regulate female hair. In this thesis, I use critical discourse analysis methods to determine what ideologies are present on consumer hair care products. I investigate a selection of products found within a Fairbanks, AK beauty store, analyzing the English and French text on the labels. The results of this analysis show that hair product labels directly address the disciplinary practices that circulate through our culture, often referencing control, aggression, and defensive relationships. The language to evoke control is modified slightly between Anglo-American and French and Franco-Canadian contexts, with the former more likely to use managerial terms in the discourse. Hair product labels also appropriate language of resistance, ultimately creating an adversarial relationship between the consumer and nature
Towards a Theory of Recursive Function Complexity: Sigma Matrices and Inverse Complexity Measures
This paper develops a data structure based on preimage sets of functions on a finite set. This structure, called the sigma matrix, is shown to be particularly well-suited for exploring the structural characteristics of recursive functions relevant to investigations of complexity. The matrix is easy to compute by hand, defined for any finite function, reflects intrinsic properties of its generating function, and the map taking functions to sigma matrices admits a simple polynomial-time algorithm . Finally, we develop a flexible measure of preimage complexity using the aforementioned matrix. This measure naturally partitions all functions on a finite set by characteristics inherent in each function\u27s preimage structure
- …