598 research outputs found

    Liquidity, Profitability On Firm Value: An Evidence of Transportation Company Listed at Indonesian Stock Exchange

    Get PDF
    Transportation companies in Indonesia are one of the most important company because they are really helpful for the people in Indonesia in order to deliver people from place to place especially in the country with lots of islands. The purpose of this study was to look at the effect of liquidity, profitability on firm value in the Transportation Sub Sector in the Indonesia Stock Exchange. The population of this study is the transportation companies listed on the Indonesia Stock Exchange which are supported by 10 companies with an observation period of 2 years, namely in 2016-2017.The method used in this research is descriptive, by using the Current ratio for liquidity, Return On Equity for profitability, and price to book value for firm value. The analysis of the data is using descriptive statistics, normality test, significant test, and regression linear. The results showed that there is a significant relationship between Liquidity and Profitability on Firm Value in the Transportation Sub Sector in the Indonesia Stock Exchange seen from F count 3.594 with a significant value of 0.05 at Ī±=10%. The result descriptive result shows that sub-sector has average liquidity of 1.1656 and profitability of 3.55%. This result indicates that transportation companies have difficulties in their ability to gain profit and are generally liquid. Thus it is recommended for companies in the transportation sub-sector to have liquidity in their operation and focus on their ability to gain profit to maximize firm value.&nbsp

    Verification of shrinkage curvature code prediction models

    Get PDF
    An attempt is made to theoretically and experimentally verify the shrinkage curvature models presented in Eurocode 2 and BS 8110. These codes claim that the models originally derived and proven for uncracked sections are suitable, with modification, for predicting the behaviour of cracked sections, although this claim has never been proven experimentally. To achieve verification, an alternative theoretical approach is initially proposed in this paper. In this theoretical model, the effect of shrinkage, creep and the variation in the neutral axis position of the section are taken into account. The stresses developed in the steel and concrete at a cracked section according to this theoretical model are then applied to a finite-element (FE) model representing a portion of the beam from the crack to mid-way between the crack and an adjacent crack. Ultimately, the mean curvature is determined. Experimentally, pairs of beams were cast and subjected to a level of flexural loading to produce a stabilised crack pattern in the constant-moment zone. The behaviour of the beams was monitored for up to 180 days. For any pair of beams, one beam was cast using a high-shrinkage concrete and the other with a low-shrinkage concrete. Each concrete type, however, exhibits similar creep. Therefore, shrinkage curvature can be obtained by subtracting the long-term movements of one beam from the other. These experimentally defined curvatures were compared with the mean curvatures obtained from the FE analysis. The comparison showed reasonable agreement. The curvatures were also compared with uncracked and cracked curvatures predicted by the codes. The curvatures derived in this investigation fell within the boundaries of the uncracked and cracked curvatures predicted by the codes and, for the fully cracked case, the curvatures were closer to the uncracked boundary

    Three resilient megastructures by Pier Luigi Nervi

    Get PDF
    Resilience, as the ability of a structure to withstand threats and continue to function, it is normally related to durability and performance to accepted standards over time. The resilience of a structure can be threatened by poor design, changes in the public's perception of style, the potential for a change-in-use and structural attack; catastrophic events such as fire, explosion or impact are usually considered the main threats for Resilience. In the contemporary built environment Resilience is considered increasingly important; it has, in fact, become one of the major design issues, especially for large, iconic or public and prominent structures: this has not always been the case. Following the Second World War, building designers faced the necessity to conceive projects within severe financial constraints, hence the proliferation of a low quality and limited life-span structures; buildings which were designed to be replaceable, cheap and perhaps anonymous. This was thought to be an effec-tive answer to quickly accommodate the large number of people moving towards the urban environment partly destroyed by the WWII. These very buildings now constitute the backbone of our urban scenery and although some still function adequately, many are perfect examples of structures which exhibit a lack of re-silience. Fortunately, there were a few designers who refused this post-war tendency and attempted to design lasting structures of quality: most of them were engineers. This is not a coincidence, engineers had less to do with the issue of providing residential accommodations and more with the erection of large structures which necessitated a higher quality control on materials and technologies: Pier Luigi Nervi was one of them. This work considers three large structures designed and built fifty years ago,in 1961, by the Italian engineer. The structures are the Bus Station at the George Washington Bridge in New York (USA); The Burgo Paper Mill in Mantua (Italy); and the Palace of Labour in Turin (Italy). All of these buildings are hybrid structures (concrete and steel), an unusual choice for Nervi that perhaps reects the design climate at the time; These buildings reacted quite differently to the events that have occurred over the past half century. One of the key factors to achieve resilience it is considered to be the quality of the buildings, which includes their ability to perform maintenance. The lack of which for whatever reason, this paper aims to demonstrate, will inevitably result in a weak performance in terms of resilience on the long run

    The Effect of the Laboratory Specimen on Fatigue Crack Growth Rate

    Get PDF
    Over the past thirty years, laboratory experiments have been devised to develop fatigue crack growth rate data that is representative of the material response. The crack growth rate data generated in the laboratory is then used to predict the safe operating envelope of a structure. The ability to interrelate laboratory data and structural response is called similitude. In essence, a nondimensional term, called the stress intensity factor, was developed that includes the applied stresses, crack size and geometric configuration. The stress intensity factor is then directly related to the rate at which cracks propagate in a material, resulting in the material property of fatigue crack growth response. Standardized specimen configurations and experimental procedures have been developed for laboratory testing to generate crack growth rate data that supports similitude of the stress intensity factor solution. In this paper, the authors present laboratory fatigue crack growth rate test data and finite element analyses that show similitude between standard specimen configurations tested using the constant stress ratio test method is unobtainable
    • ā€¦
    corecore